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41 The Laplace Transform: Basic Definitions
and Results

Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:

e The given "hard” problem is transformed into a ”simple” equation.

e This simple equation is solved by purely algebraic manipulations.

e The solution of the simple equation is transformed back to obtain the so-
lution of the given problem.

In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.

The above procedure can be summarized by Figure 41.1

DE to be Determine Bolve Deterrriine Solution
galved | g l| aplace - w-{ Algebraic  —m|Inverse ®inthe DE
Transform Equation Transform
Figure 41.1

In this section we introduce the concept of Laplace transform and discuss
some of its properties.

The Laplace transform is defined in the following way. Let f(¢) be defined
for ¢ > 0. Then the Laplace transform of f, which is denoted by L[f(¢)]
or by F(s), is defined by the following equation

LIf(t)] = F(s) = lim/0 f(t)e—stdt:/ooo ft)e*dt

T—o0

The integral which defined a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral in convergent then we say that the function f(t)
possesses a Laplace transform. So what types of functions possess Laplace
transforms, that is, what type of functions guarantees a convergent improper
integral.

Example 41.1
Find the Laplace transform, if it exists, of each of the following functions

(a) f(t) =€ () f() =1 () f(t) =t (d) f(t)=¢"



Solution.
(a) Using the definition of Laplace transform we see that

00 T
Lle™] :/ e~ dt = lim et gt
0

T—=o0 Jo
but T T if s=a
/ e~ (=t — { lee—(s—a)T .
0 —— ifs#a.
For the improper integral to converge we need s > a. In this case,
Ll = Fls) = —— s>a
s—a

(b) In a similar way to what was done in part (a), we find

00 T
1
L[1] = / e Stdt = lim e dt = -, s> 0.
0 S

T—o00 0

o] t —st —st] > 1
L[] :/ te~stdt = {— €= 1 ==, s>0.
0

2 @27
s 52 1, s

(d) Again using the definition of Laplace transform we find

Lle"] :/ e st
0

If s < 0 then t2—st > 0 so that e~ > 1 and this implies that fooo e’ =stdt >
fooo . Since the integral on the right is divergent, by the comparison theorem
of improper integrals (see Theorem 41.1 below) the integral on the left is also
divergent. Now, if s > 0 then [;°e'*~*)dt > [ dt. By the same reasoning
the integral on the left is divergent. This shows that the function f(t) = e’
does not possess a Laplace transform m

The above example raises the question of what class or classes of functions
possess a Laplace transform. Looking closely at Example 41.1(a), we notice
that for s > a the integral fooo e~ (=9t qt is convergent and a critical compo-
nent for this convergence is the type of the function f(t). To be more specific,
if f(t) is a continuous function such that

[f(@®)] < Me*, t>C (1)
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where M > 0 and a and C' are constants, then this condition yields

[e's) C [e%S)
/ f(t)e stdt < / fe stdt + M / e~ 5=t
0 0 c

Since f(t) is continuous in 0 < ¢t < C, by letting A = max{|f(¢)|: 0 <t < C}

we have
c c 1 e—C
/ f(t)e *tdt < A/ e dt = A (— - ) < 00.

On the other hand, Now, by Example 41.1(a), the integral [ e~~®'d¢ is
convergent for s > a. By the comparison theorem of improper integrals (see
Theorem 41.1 below) the integral on the left is also convergent. That is, f(t)
possesses a Laplace transform.

We call a function that satisfies condition (1) a function with an exponential
order at infinity. Graphically, this means that the graph of f(¢) is contained
in the region bounded by the graphs of y = Me* and y = —Me® for t > C.
Note also that this type of functions controls the negative exponential in the
transform integral so that to keep the integral from blowing up. If C' = 0
then we say that the function is exponentially bounded.

Example 41.2
Show that any bounded function f(¢) for ¢ > 0 is exponentially bounded.

Solution.

Since f(t) is bounded for ¢ > 0, there is a positive constant M such that
|f(t)| < M for all t > 0. But this is the same as (1) with a = 0 and C' = 0.
Thus, f(t) has is exponentially bounded m

Another question that comes to mind is whether it is possible to relax the
condition of continuity on the function f(t). Let’s look at the following situ-
ation.

Example 41.3
Show that the square wave function whose graph is given in Figure 41.2
possesses a Laplace transform.
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Figure 41.2

Note that the function is periodic of period 2.

Solution.

Since f(t)e " < e~ we find [~ f(t)e *dt < [° e *'dt. But the integral on
the right is convergent for s > 0 so that the integral on the left is convergent
as well. That is, L[f(¢)] exists for s > 0 m

The function of the above example belongs to a class of functions that we
define next. A function is called piecewise continuous on an interval if
the interval can be broken into a finite number of subintervals on which the
function is continuous on each open subinterval (i.e. the subinterval without
its endpoints) and has a finite limit at the endpoints (jump discontinuities
and no vertical asymptotes) of each subinterval. Below is a sketch of a
piecewise continuous function.

| TN

Figure 41.3

Note that a piecewise continuous function is a function that has a finite
number of breaks in it and doesnt blow up to infinity anywhere. A function
defined for ¢ > 0 is said to be piecewise continuous on the infinite in-
terval if it is piecewise continuous on 0 < ¢ < T for all T > 0.

Example 41.4
Show that the following functions are piecewise continuous and of exponential
order at infinity for ¢t > 0



(a) f(t)=t" (b) f(t) =t"sinat

Solution.

(a) Since €' = 3> & > £ we have t" < nle'. Hence, t" is piecewise con-
tinuous and exponentially bounded.

(b) Since [t" sinat| < nle!, t" sin at is piecewise continuous and exponentially

bounded m

Next, we would like to establish the existence of the Laplace transform for
all functions that are piecewise continuous and have exponential order at
infinity. For that purpose we need the following comparison theorem from
calculus.

Theorem 41.1
Suppose that f(t) and g(t) are both integrable functions for all ¢ > t, such
that |f(t)] < |g(t) for t > to. If [7 g(t)dt is convergent, then [ f(t)dt is
also convergent. If, on the other hand, ftzo f(t)dt is divergent then j;zo f@t)dt
is also divergent.

Theorem 41.2 (Ezistence)
Suppose that f(t) is piecewise continuous on ¢ > 0 and has an exponential
order at infinity with |f(t)] < Me® for t > C. Then the Laplace transform

F(s) = /000 f(t)e *dt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F'(s) to exist.

Proof.
The integral in the definition of F'(s) can be splitted into two integrals as
follows

/000 F(t)estdt = /OC F(t)e"tdt + /COO F(t)e—tdt.

Since f(t) is piecewise continuous in 0 < ¢ < (), it is bounded there. By
letting A = max{|f(t)] : 0 <t < C'} we have

C C 1 e*SC
/ f(t)e *tdt < A/ e dt = A (— — ) < o0.
0 0 S S
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Now, by Example 41.1(a), the integral fgo f(t)e~stdt is convergent for s > a.
By Theorem 41.1 the integral on the left is also convergent. That is, f(t)
possesses a Laplace transform m

In what follows, we will denote the class of all piecewise continuous func-
tions with exponential order at infinity by PE. The next theorem shows that
any linear combination of functions in P& is also in PE. The same is true for
the product of two functions in PE.

Theorem 41.3
Suppose that f(t) and g(t) are two elements of PE with

If(t)] < Mie®t, t>C; and  |g(t)| < Mae™t, t > Ch.

(i) For any constants a and 3 the function af(t) + Bg(t) is also a member of
PE. Moreover

Llaft) + By(t)] = aLf ()] + BLIg([)].
(ii) The function h(t) = f(t)g(t) is an element of PE.
Proof.

(i) It is easy to see that af(t) 4+ Bg(t) is a piecewise continuous function.
Now, let C' = C; 4+ Cy, a = max{ay,as}, and M = |a|M; + |3|Ms. Then for
t > C we have

o f (8) + Bg(B)] < |allf()] + Bllg(t)] < |l Mie™" + |8|Mae™" < Me™.

This shows that af(t) + Bg(t) is of exponential order at infinity. On the
other hand,

=aL[f +6£ g(t)].

(ii) It is clear that h(t) = f (t)g(t) is a piecewise continuous function. Now,
letting C' = C1+Cy, M = MM, and a = a1+ a then we see that for t > C
we have

(O] = [f(B)llg(t)] < My Mpel o2 = Me.
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Hence, h(t) is of exponential order at infinity. By Theorem 41.2 , L[h(t)]
exists for s > a W

We next discuss the problem of how to determine the function f(t) if F'(s)
is given. That is, how do we invert the transform. The following result on
uniqueness provides a possible answer. This result establishes a one-to-one
correspondence between the set PE and its Laplace transforms. Alterna-
tively, the following theorem asserts that the Laplace transform of a member
in PE is unique.

Theorem 41.4
Let f(t) and g(t) be two elements in PE with Laplace transforms F'(s) and
G(s) such that F(s) = G(s) for some s > a. Then f(t) = g(t) for all £ > 0

where both functions are continuous.

The standard techniques used to prove this theorem( i.e., complex analysis,
residue computations, and/or Fourier’s integral inversion theorem) are gen-
erally beyond the scope of an introductory differential equations course. The
interested reader can find a proof in the book “Operational Mathematics”
by Ruel Vance Churchill or in D.V. Widder “The Laplace Transform”.
With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a piecewise continuous function f of exponential
order at infinity whose Laplace transform is F, we call f the inverse Laplace
transform of F' and write f = £L7[F(s)]. Symbolically

f(t) = L7[F(s)] <= F(s) = LIf(1)].

Example 41.5
Find £7! (ﬁ) , s> 1.

Solution.
From Example 41.1(a), we have that L[e*] = Sia, s > a. In particular, for
a =1 we find that L[e'] = 15, s > 1. Hence, L7 (5) =€, t >0 m.

The above theorem states that if f(¢) is continuous and has a Laplace trans-
form F'(s), then there is no other function that has the same Laplace trans-
form. To find L7'[F(s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(¢) that yields the given F'(s).

When the function f(¢) is not continuous, the uniqueness of the inverse

9



Laplace transform is not assured. The following example addresses the
uniqueness issue.

Example 41.6
Consider the two functions f(t) = h(t)h(3 —t) and g(t) = h(t) — h(t — 3).

(a) Are the two functions identical?
(b) Show that L[f(t)] = L[g(t).

Solution.
(a) We have
1, 0<t<3
Ft) = { 0, t>3
and

1, 0<t<3
g(t):{o t>3

So the two functions are equal for all £ # 3 and so they are not identical.
(b) We have

1 — 6733

S

,s > 0.

Clf(t)] = Llg(t)] = / estdt =

Thus, both functions f(¢) and g(t) have the same Laplace transform even
though they are not identical. However, they are equal on the interval(s)
where they are both continuous m

The inverse Laplace transform possesses a linear property as indicated in
the following result.

Theorem 41.5
Given two Laplace transforms F'(s) and G(s) then

L aF(s) +bG(s)] = alL [F(s)] + bLG(s)]
for any constants a and b.

Proof.

Suppose that L[f(t)] = F(s) and L[g(t)] = G(s). Since Llaf(t) + bg(t)]
allf(t)]+bL[g(t)] = aF(s)+bG(s) then L7 aF(s)+bG(s)] = af(t)+bg(t)
al™YF(s)] + LG (s) m

10



Practice Problems

Problem 41.1
Determine whether the integral [
verges, give its value.

1
1+¢2

dt converges. If the integral con-

Problem 41.2
Determine whether the integral fooo
verges, give its value.

t

pzdt converges. If the integral con-

Problem 41.3
Determine whether the integral [~ e~ cos (e7*)dt converges. If the integral
converges, give its value.

Problem 41.4
Using the definition, find L[e*], if it exists. If the Laplace transform exists
then find the domain of F(s).

Problem 41.5
Using the definition, find L[t — 5], if it exists. If the Laplace transform exists
then find the domain of F'(s).

Problem 41.6
Using the definition, find £[e®°], if it exists. If the Laplace transform
exists then find the domain of F(s).

Problem 41.7
Using the definition, find L£[(t — 2)?], if it exists. If the Laplace transform
exists then find the domain of F(s).

Problem 41.8

Using the definition, find L[f(¢)], if it exists. If the Laplace transform exists
then find the domain of F(s).

0, 0<t<1
f(t>—{t—1, t>1

11



Problem 41.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F(s).

0, 0<t<1
floy=¢ t—1, 1<t<?2
0, t>2.

Problem 41.10
Let n be a positive integer. Using integration by parts establish the reduction

formula .
tn —S
/t"e“dt S + E/t"les"/dzﬁ, s> 0.

S S

Problem 41.11
For s > 0 and n a positive integer evaluate the limits

lim;_, t"e %t (b) limy o t"e™ %

Problem 41.12
(a) Use the previous two problems to derive the reduction formula for the
Laplace transform of f(t) = ",

L[t = gﬁ[t”_l], s> 0.

(b) Calculate L[t*], for k =1,2,3,4,5.
(c) Formulate a conjecture as to the Laplace transform of f(¢),¢" with n a
positive integer.

From a table of integrals,

oau . _ au asin fu— G sin Bu
f e*sin fudu = e e
[ e* cos fudu = e““%ﬁ?imﬁu

Problem 41.13
Use the above integrals to find the Laplace transform of f(t) = coswt, if it
exists. If the Laplace transform exists, give the domain of F(s).

Problem 41.14
Use the above integrals to find the Laplace transform of f(t) = sinwt, if it
exists. If the Laplace transform exists, give the domain of F'(s).
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Problem 41.15
Use the above integrals to find the Laplace transform of f(t) = cosw(t — 2),
if it exists. If the Laplace transform exists, give the domain of F(s).

Problem 41.16
Use the above integrals to find the Laplace transform of f(t) = e sint, if it
exists. If the Laplace transform exists, give the domain of F'(s).

Problem 41.17
Use the linearity property of Laplace transform to find L[5e~" + ¢ + 2¢2].
Find the domain of F(s).

Problem 41.18
Consider the function f(t) = tant.

(a) Is f(t) continuous on 0 < ¢ < oo, discontinuous but piecewise contin-
uous on 0 <t < oo, or neither?
(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < 00?

Problem 41.19
Consider the function f(t) = t?e~".

(a) Is f(t) continuous on 0 < ¢t < oo, discontinuous but piecewise contin-
uous on 0 <t < oo, or neither?
(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < oco?

Problem 41.20
Consider the function f(t) =

2
e
e?t+1°

(a) Is f(t) continuous on 0 < ¢t < oo, discontinuous but piecewise contin-
uous on 0 <t < oo, or neither?
(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 < t < 0o?

Problem 41.21
Consider the floor function f(t) = [t], where for any integer n we have
[t] =nforalln <t<n+l.

(a) Is f(t) continuous on 0 < ¢ < oo, discontinuous but piecewise contin-
uous on 0 <t < oo, or neither?

(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < 00?

13



Problem 41.22
Find £ ().

s—2

Problem 41.23

Find £7' (-5 + ) -

s+1

Problem 41.24

Find £~} (L + ﬁ) .

s+2

14



42 Further Studies of Laplace Transform

Properties of the Laplace transform enable us to find Laplace transforms
without having to compute them directly from the definition. In this sec-

tion, we establish properties of Laplace transform that will be useful for
solving ODEs.

Laplace Transform of the Heaviside Step Function
The Heaviside step function is a piecewise continuous function defined by

1, t>0
h(t):{o t<0

Figure 42.1 displays the graph of h(t).

y

1 t
Figure 42.1
Taking the Laplace transform of h(t) we find

Lh()] = /O " h(t)e e = /0 " sty [_“tr ~Lsn

S Jo

A Heaviside function at « > 0 is the shifted function h(t — «) (« units to the
right). For this function, the Laplace transform is

Lh(t — )] = /0 N h(t — a)e ™ dt = /a

e e

6—stdt _ |:_ est:| o0 P

= , s> 0.

S S

«

Laplace Tranform of e%
The Laplace transform for the function f(t) = e* is

o —(s—a)t]>® 1
L[eat] _ / 6_(S_a)tdt — |:_€ :| — , > a.
0 0

sS—a
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Laplace Tranforms of sinat and cosat
Using integration by parts twice we find

o0
L[sin at] :/ e ' sin atdt
0

e Stsinat  ae *cosat]™ a® [ _ .
S — > - e sin atdt
S S 0 S 0
a a® .
=5 gﬁ[sm at]
2., 2
s+a . a
( 2 > L[sin at] ==
, a
L][sin at] =2 ° > 0. (2)

A similar argument shows that

L[cosat] = WSQT s > 0.

Laplace Transforms of cosh at and sinh at
Using the linear property of £ we can write

L[cosh at] ! (L[e™] + L[e~™)

2
1 1 1

-5 + y S > |CL‘
2\s—a s+a

s
:m, s > \a]
A similar argument shows that
L[sinat] = 2 57 |al.

Laplace Transform of a Polynomial
Let n be a positive integer. Using integration by parts we can write

o0 e st o [
/ t"e St = — { } + — / t"testat.
0 § 0 S Jo

By repeated use of L’Hopital’s rule we find lim;_,o, t"e 5" = limy_ o, snn_e'st =0
for s > 0. Thus,

cft] =", s> o.

S
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Using induction on n = 0,1,2,--- one can easily eastablish that

n!
3n+1 )

L[t"] = s > 0.

Using the above result together with the linearity property of £ one can find
the Laplace transform of any polynomial.

The next two results are referred to as the first and second shift theorems.
As with the linearity property, the shift theorems increase the number of
functions for which we can easily find Laplace transforms.

Theorem 42.1 (First Shifting Theorem)
If f(t) is a piecewise continuous function for ¢ > 0 and has exponential order
at infinity with |f(¢)| < Me*, ¢ > C, then for any real number o we have

Lleft)=F(s—a), s>a+a
where L[f(t)] = F(s).

Proof.
From the definition of the Laplace transform we have

Ll £(1)] = /0 et F (1)t — /0 (=)t £ (1) dt.

Using the change of variable 3 = s — a the previous equation reduces to

clepe) = [ St - | TP ()t = F(3) = F(s-a), s> atan

0 0

Theorem 42.2 (Second Shifting Theorem)

If f(t) is a piecewise continuous function for ¢ > 0 and has exponential order
at infinity with |f(¢)] < Me®, t > C, then for any real number a > 0 we
have

L[f(t —a)h(t —a)l|=e¥F(s), s>a
where L[f(t)] = F(s) and h(t) is the Heaviside step function.

Proof.
From the definition of the Laplace transform we have

o0

LIf(t —a)h(t —a)] = /000 f(t —a)h(s — a)e *dt = / f(t —a)e*dt.
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Using the change of variable 3 =t — a the previous equation reduces to

CIf(t— a)h(t — a)] = / " F(B)e s
= % /000 f(B)e Pd3 =e*“F(s), s>am

Example 42.1
Find

(a) Le*t?] (b) L[e¥ cos2t] (c) L7 e*s?].

Solution.
(a) By Theorem 42.1, we have L[e*t?] = F(s — 2) where L[t?] = & =
F(s), s > 0. Thus, L[e*t?] = 2, s> 2.

(s—2)3
(b) As in part (a), we have L[e* cos 2t] = F(s—3) where L[cos 2t] = F(s—3).
But Llcos 2t] = s > 0. Thus,

S5
32+47
s—3

3t _
[,[6 COS2t] = m, §>3

(c) Since L[t] = %, by Theorem 42.2, we have

6_2t

Therefore,

e 2t 0, 0<t<2

= {?] :(t_2)h(t—2):{ t—2 t>2m

The following result relates the Laplace transform of derivatives and integrals
to the Laplace transform of the function itself.

Theorem 42.3

Suppose that f(t) is continuous for ¢ > 0 and f’(t) is piecewise continuous
of exponential order at infinity with |f(t)| < Me®, t > C Then

(a) f(t) is of exponential order at infinity.

(b) LIf'(8)] = SLLF(D)] — £(0) = sF(s) — £(0), s > max{a,0} + 1.

(c) LIf"®)] = s*LIf(H)] — s£(0) = f1(0) = $’F(s) = sf(0) — f(0), s >
max{a,0} + 1.
(d) £ [ ;f(u)du} = @ = Fis), s > max{a,0} + 1.

18



Proof.
(a) By the Fundamental Theorem of Calculus we have f(¢) fo I (u)du.
Also, since f’ is piecewise continuous then |f'(t)| < T for some T > 0 and

all 0 <t < C. Thus,
C t
= 0) — "(u)du — "(w)d
£0) /Of(U)u /Cf(U)UI

ol | ()

t
<|f(0)] +TC+M/ e™du.
c

Note that if @ > 0 then

and so

If @ = 0 then

and therefore
FOI < FO)+TC+ M(t—C) < (If(0)| +TC + M)e'

Now, if a < 0 then
! 1 1
/ eaudu:_(eat_eac>§_
c a |al
so that

M
— et

F@ < (O] +TC + il

It follows that
)] < Ne¥, t>0

where b = max{a,0} + 1.

(b) From the definition of Laplace transform we can write

o —st
/ o



Since f'(t) may have jump discontinuities at ¢i,ty,--- ,ty in the interval
0 <t< A, we can write

Integrating each term on the RHS by parts and using the continuity of f(¢)
to obtain

/ Pt =f(t)e= — £(0) + 5 / f(t)e
0 0
/ @) dt =f(tz)e™" — F(t)e™" + s / f(Hyedt

tN

PO dt = (1) — Flty)e™5 + s / Ft)e s

tn

th; )
/ F(t)e™dt =f(A)e™" = f(ty)e™™" + s / f(t)e*dt.

Also, by the continuity of f(¢) we can write

/oA F(t)etdt = /Otl f@)e™dt + /: flledet -+ /t: e

Hence,

A
/ f (e tdt = f(A)e 4 — £(0) + s / f(t)esdt.

—sA

Since f(t) has exponential order at infinity, lima .., f(A)e ** = 0. Hence,

LIf'(t)] = sL[f ()] = f(0).
(c) Using part (b) we find
LIf" )] =sLLf'(t)] = £(0)

=s(sF(s) — f(0)) = f(0)
=s>F(s) — sf(0) — f'(0), s> max{a,0} + 1.



(d) Since 4 (f(f f(u)du) = f(t), by part (b) we have

£ = 1) =2 { [ rwa

and therefore

L {/Otf(u)du] Vi) Fis), s> max{a,0} + 1 m

S

The argument establishing part (b) of the previous theorem can be extended
to higher order derivatives.

Theorem 42.4
Let f(t), f'(t),---, f™ 1 (t) be continuous and f™(t) be piecewise continu-
ous of exponential order at infinity with | (¢)| < Me®, ¢ > C. Then

LD W] = L= 0 =2 (0= =" (0), 5 > max{a,0}+1.

We next illustrate the use of the previous theorem in solving initial value
problems.

Example 42.2
Solve the initial value problem

y'—4y' +9y=t, y(0)=0, y'(0)=1.

Solution.
We apply Theorem 42.4 that gives the Laplace transform of a derivative. By
the linearity property of the Laplace transform we can write

Lly"] —4L[y'] +9L[y] = L]t].
Now since

Lly"] =s*Lly] — sy(0) —y'(0) = s°Y (s) — 1
Lly) =sY (5) — y(0) = 5Y (s)

clt] =

52
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where L[y] = Y (s), we obtain
s?Y(s) — 1 —4sY(s) +9Y (s) = —.

Rearranging gives

241
(s> —4s+9)Y(s) = 2
Thus,
241
Y —
(5) s?(s2 —4s+9)
and

241
t)y=L""
0= | =g
In the next section we will discuss a method for finding the inverse Laplace
transform of the above expression.

Example 42.3

Consider the mass-spring oscillator without friction: y” + y = 0. Suppose
we add a force which corresponds to a push (to the left) of the mass as it
oscillates. We will suppose the push is described by the function

F(t) = —h(t — 27) + u(t — (27 + a))

for some a > 27 which we are allowed to vary. (A small a will correspond
to a short duration push and a large a to a long duration push.) We are
interested in solving the initial value problem

y'+y=f@1), y0)=1, ¢ (0)=0.

Solution.
To begin, determine the Laplace transform of both sides of the DE:

Lly" +y] = LIf ()]

1 1
s%Y — sy(0) — ¢/ (0) + Y (s) = —56_2”5 + ge_(%“)s.
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Thus,

—(274a)s —27s
e e S
Y(s) = — + .
s(s24+1) s(s2+1) s2+1
Now since —z ! 5 we see that

s(s2+1) ~ s 21

Y(S) _ 6—(27r+a)s |:1 . S :| . 6—27rs |:1 _ S :| + S

s  s2+1 s  s24+1 s2+1

and therefore

y(t) =h(t — (27 + a)) [5—1 <1 I

- SQH)} (t— (27 + a))
“h(t — 27) {.c—l (% - 82‘11)1 (t — 2) + cost
—h(t — (27 + a))[1 — cos (£ — (27 + )] — u(t — 2m)[1 — cos (¢ — 27)]

+cost.

We conclude this section with the following table of Laplace transform pairs.
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f(t) F(s)

w={g 120 e
" n=12--- S s> 0
eat - s>
sin (wt) 7o 5> 0
cos (wt) 7oz §>0
sinh (wt) o 5> |wl
cosh (wt) oo, 8> |wl

e f(t), with |f(t)| < Me™ F(s—a), s>a+a

e h(t) L s>«

e n=1,2--- $,5>a
e sin (wt) e S > a
e cos (wt) e S > a

flt—a)h(t —a), a >0 e *F(s), s>a
with |f(t)| < Me™
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F(s) (continued)

h(t—a), a>0
tf(t)
t .
55 Sinwt
1 .
5.3 [Sinwt — wt cos wt|

(), with f(t) continuous
and |(t)] < Me

f(t), with f'(t) continuous
and | f"(t)] < Me*

fO(t), with fO=Y(t) continuous
and | f™(t)] < Me®

f(f f(w)du, with |f(t)] < Me™

—as

— $>0

e

-F'(s)
m, s>0

@ ¢ >0

sE(s) = f(0)
s > max{a,0} +1

s*F(s) — sf(0) = f'(0)
s > max{a,0} + 1

s"F(s) — s"_lf(o) ...
-sf(”—Q)(O) _ f(n—l)(o)
s > max{a,0} +1

E(s)

, s >max{a,0} +1

Table £
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Practice Problems

Problem 42.1
Use Table L to find £[2¢e" + 5].

Problem 42.2
Use Table £ to find L[e¥3h(t — 1)].

Problem 42.3
Use Table £ to find L[sin”® wt].

Problem 42.4
Use Table £ to find L[sin 3¢ cos 3t].

Problem 42.5
Use Table L to find L[e?* cos 3t].

Problem 42.6
Use Table £ to find L[e*(t* + 3t + 5)].

Problem 42.7

Use Table £ to find £7'[21% + 5].

Problem 42.8

Use Table £ to find Eil[(sfs)zl}.

Problem 42.9
Use Table £ to find £7![&=].

s—9

Problem 42.10 ,
—11e °%(2547
Use Table £ to find £ 1[%].
Problem 42.11
Graph the function f(t) = h(t — 1) + h(t — 3) for ¢ > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Problem 42.12

Graph the function f(t) = t[h(t — 1) — h(t — 3)] for ¢t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].
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Problem 42.13
Graph the function f(t) = 3[h(t — 1) — h(t —4)] for t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Problem 42.14
Graph the function f(t) = |2 — t|[h(t — 1) — h(t — 3)] for t > 0, where h(t) is
the Heaviside step function, and use Table £ to find L[f(¢)].

Problem 42.15
Graph the function f(t) = h(2—t) for t > 0, where h(t) is the Heaviside step
function, and use Table £ to find L[f(t)].

Problem 42.16
Graph the function f(t) = h(t — 1) + h(4 — t) for t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Problem 42.17
The graph of f(t) is given below. Represent f(¢) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of

f(t).

Problem 42.18
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of

f(t).

2 (———
1 [ —
N 2
0 1 2 3 4



Problem 42.19

Using the partial fraction decomposition find £~} [%] .

Problem 42.20
Using the partial fraction decomposition find £7* [235:38}

Problem 42.21
Use Laplace transform technique to solve the initial value problem

Y +4y =g(t), y(0) =2

where
0, 0<t<«1
gt)y=1¢ 12, 1<t<3
0, t>3

Problem 42.22
Use Laplace transform technique to solve the initial value problem

y' —4y=¢€* y(0)=0, y'(0)=0.

Problem 42.23
Obtain the Laplace transform of the function [, ¢f(A)d\ in terms of L[f(t)] =

F(s) given that [ f(\)d\ = 3.
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43 The Laplace Transform and the Method
of Partial Fractions

In the last example of the previous section we encountered the equation
s2+1
t)y=rL"" :
y(t) [32(32—45—#9)}

We would like to find an explicit expression for y(¢). This can be done using
the method of partial fractions which is the topic of this section. According

to this method, finding £~ (gg;) , where N (s) and D(s) are polynomials,
require decomposing the rational function into a sum of simpler expressions
whose inverse Laplace transform can be recognized from a table of Laplace
transform pairs.

The method of integration by partial fractions is a technique for integrating

rational functions, i.e. functions of the form
N(s)
D(s)

R(s) =

where N(s) and D(s) are polynomials.
The idea consists of writing the rational function as a sum of simpler frac-
tions called partial fractions. This can be done in the following way:

Step 1. Use long division to find two polynomials 7(s) and ¢(s) such that
N(s) _ r(s)
i) " Dy

Note that if the degree of N(s) is smaller than that of D(s) then ¢(s) = 0
and r(s) = N(s).

Step 2. Write D(s) as a product of factors of the form (as + b)" or (as? +
bs+c)™ where as?+bs+c is irreducible, i.e. as®*+bs+c = 0 has no real zeros.
Step 3. Decompose % into a sum of partial fractions in the following
way:

(1) For each factor of the form (s — «)* write

Al AQ Ak




where the numbers A;, Ay, -+, Ay are to be determined.
(2) For each factor of the form (as® 4 bs + ¢)* write

Bls + Cl BQS + Cg BkS + Ck
as?+bs+c  (as®+ bs+c)? (as? 4 bs + c)k’
where the numbers By, By, -+, By and C1,Csy, - - -, C}, are to be determined.

Step 4. Multiply both sides by D(s) and simplify. This leads to an ex-
pression of the form

r(s) = a polynomial whose coefficients are combinations of A;, B;, and C;.

Finally, we find the constants, A;, B;, and C; by equating the coefficients of
like powers of s on both sides of the last equation.

Example 43.1

Decompose into partial fractions R(s) = 245742

s2—1 -
Solution.
Step 1. %:s—l—ljtjj—j.
Step 2. s —1=(s—1)(s+1).

s+3 _ A B
Step 3. (s+1;Esfl) T s+l + s—1°
Step 4. Multiply both sides of the last equation by (s — 1)(s + 1) to obtain

s+3=A(s—1)+ B(s+1).

Expand the right hand side, collect terms with the same power of s, and
identify coefficients of the polynomials obtained on both sides:

s+3=(A+B)s+ (B—A).

Hence, A+ B =1 and B — A = 3. Adding these two equations gives B = 2.
Thus, A = —1 and so

Now, after decomposing the rational function into a sum of partial fractions

all we need to do is to find the Laplace transform of expressions of the form
A Bs+C
(s—a)m or (as?+bs+c)n*
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Example 43.2
Find £} [

)
s(s=3) | *

Solution.

We write
1 A B

s(s —3) S
Multiply both sides by s(s — 3) and simplify to obtain
1=A(s—3)+ Bs
or
1= (A+ B)s—3A.

Now equating the coefficients of like powers of s to obtain —3A = 1 and
A+ B = 0. Solving for A and B we find A = —% and B = % Thus,

T Rt Ll I R Ll P
1

1
=——h(t)+ =€ t>0

where h(t) is the Heaviside unit step function m

Example 43.3
Find £ [340] .

52+3s

Solution.
We factor the denominator and split the integrand into partial fractions:

35+ 6 A B

s(s+3) s T3 +3
Multiplying both sides by s(s 4+ 3) to obtain

3s+6 = A(s+3)+ Bs
= (A+B)s+ 34

Equating the coefficients of like powers of x to obtain 3A =6 and A+ B = 3.
Thus, A =2 and B = 1. Finally,

1 1
5_1{328+6]:2£_1 H+L—1[ }:2h(t)+e‘3t,t20l
S+3S S S+3
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Example 43.4
Find £71 | 250 .

s(s+1)2

Solution.
We factor the denominator and split the rational function into partial frac-
tions:

s+ 1 _A B C

s(s+1)2 BTSN (s+1)%
Multiplying both sides by s(s + 1)? and simplifying to obtain

s2+1 =  A(s+1)>+Bs(s+1)+Cs
= (A+B)s*+ (2A+ B+ C)s+ A.

Equating coefficients of like powers of s we find A = 1,2A4+ B+ C =0
and A+ B = 1. Thus, B =0 and C' = —2. Now finding the inverse Laplace
transform to obtain

L1 L(S:TJrll)Q} =L H —2L7! LS j 1)2} =h(t)—2te, t>0m

Example 43.5
Use Laplace transform to solve the initial value problem

y' +3y +2y=¢€"", y(0)=y'(0)=0.

Solution.
By the linearity property of the Laplace transform we can write

Ly"] + 3Ly +2L[y] = L[e™"].
Now since

Ly"] =s*L]y] — sy(0) — y'(0) = s°Y(s)
Lly'] =sY(s) —y(0) = sY(s)

_ 1
Lle™] :s—i—l

where L[y] = Y (s), we obtain

s*Y (s) 4+ 3sY (s) +2Y (s) = R
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Rearranging gives

1
2 2)Y (s) = .
(s 4+ 3s+2)Y(s) pong]
Thus,
1
Y(s) = )
(s) (s+1)(s2+3s+2)
and .
y(t) =L

(s+1)(s2+3s+2)]

Using the method of partial fractions we can write

1 1 1 1

(s+1)(s>+3s+2) s+2_3+1+(s+1)2'

Thus,

y(t) =L L}J} -L LiJ +L {(erll)Q]

= —et4te™, t>0m
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Practice Problems

In Problems 43.1 - 43.4, give the form of the partial fraction expansion for
F(s). You need not evaluate the constants in the expansion. However, if the
denominator has an irreducible quadratic expression then use the completing
the square process to write it as the sum/difference of two squares.

Problem 43.1

s3+3s+1
PO = i ap
Problem 43.2
Fs) = s +5s—3 .
(s2+16)(s —2)
Problem 43.3
F(s) - s3—1

(1) +4)7
Problem 43.4

s* 4+ 552 +25—9
N (s2+8s+17)(s — 2)%

Problem 43.5
Find z—l[ 1 }

G+D?

Problem 43.6
Find £ [ 23 ]

523542

Problem 43.7
Find £} 45241
Problem 43.8

: —1 | 5246548
Find £ [—84+852+16} )
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Problem 43.9
Use Laplace transform to solve the initial value problem

y' + 2y = 26sin 3t, y(0) = 3.

Problem 43.10
Use Laplace transform to solve the initial value problem

y' + 2y =4t, y(0) =3.

Problem 43.11
Use Laplace transform to solve the initial value problem

Y+ 3y +2y =6e", y(0) =1, y'(0) = 2.

Problem 43.12
Use Laplace transform to solve the initial value problem

y" + 4y =cos2t, y(0) =1, y'(0) = 1.

Problem 43.13
Use Laplace transform to solve the initial value problem

y' =2y +y=¢€* y(0)=0, y'(0) =0.

Problem 43.14
Use Laplace transform to solve the initial value problem

y' + 9y =g(t), y(0) =1, y'(0) =0

6, 0<t<
MQZ{ "

where

0, T<t< o0

Problem 43.15
Determine the constants «, 3, yo, and y;, so that Y'(s) =
transform of the solution to the initial value problem

y' 4+ oy + By =0, y(0) =yo, ¥'(0) = yp-

Problem 43.16
Determine the constants «, 3, yo, and gy, so that Y(s) = ﬁ is the Laplace
transform of the solution to the initial value problem

y'+ oy + By =0, y(0) = yo, ¥'(0) = yp.

2s—1
524542

is the Laplace
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44 Laplace Transforms of Periodic Functions

In many applications, the nonhomogeneous term in a linear differential equa-
tion is a periodic function. In this section, we derive a formula for the Laplace
transform of such periodic functions.

Recall that a function f(¢) is said to be T—periodic if we have f(t+7) = f(t)
whenever ¢ and ¢t 4+ T are in the domain of f(¢). For example, the sine and
cosine functions are 2r—periodic whereas the tangent and cotangent func-
tions are m—periodic.

If f(t) is T—periodic for ¢t > 0 then we define the function

fr(t) = { fg?’ ’ i?T

The Laplace transform of this function is then

& T
Llfr(t)] = / fT<t)e—stdt _ / f(t)efstdt.
0 0
The Laplace transform of a T'—periodic function is given next.

Theorem 44.1
If f(t) is a T—periodic, piecewise continuous fucntion for ¢ > 0 then

Lfr(t)]
E[f(t)] = m, s > 0.
Proof.
Since f(t) is piecewise continuous, it is bounded on the interval 0 <t < T.
By periodicity, f(t) is bounded for ¢ > 0. Hence, it has an exponential order
at infinity. By Theorem 41.2, L£[f(¢)] exists for s > 0. Thus,

LIf(1)] = /0 h JORCEDY /0 fr(t — nT)h(t — nT)e™*'dt,

where the last sum is the result of decomposing the improper integral into a
sum of integrals over the constituent periods.
By the Second Shifting Theorem (i.e. Theorem 42.2) we have

Llfr(t —nT)h(t —nT)] = e "L[fr(t)], s >0
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Hence,
LIF®] =D e Llfr(t)] = LIfr(1)] (Z 6‘"“) :

Since s > 0, it follows that 0 < e™"7* < 1 so that the series Y >2 e "¢ is a
convergent geoemetric series with limit H+ST Therefore,

L[f(t)] = %, s>0m

Example 44.1
Determine the Laplace transform of the function

1, 0<t<?
f(t) = J+T) = f(t), t>0.

0, T<t<T

Solution.
The graph of f(t) is shown in Figure 44.1.

»

| r—
= = S = >
T2 i 5 Al 2T
Figure 44.1
By Theorem 44.1,
T
JZestdt
_Jo
Evaluating this last integral, we find
1—87% 1
LIfO = —=7F = 7 s>0m

Cl—eT s(l+e 2)

Example 44.2
Find the Laplace transform of the sawtooth curve shown in Figure 44.2
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ay/ / f/

Figure 44.2

Solution.
The given function is periodic of period b. For the first period the function
is defined by

fi(t) = SI() = h(t = b))

So we have
L] =LIGHR(E) = h(t = )]
= = 5 - LIh(t) = h(t = )
But
L[h(t) — h(t — b)] =L[h(t)] — L[h(t —b)]
:% — e;bs’ s>0
Hence, b —b
el = 5 (5 - =)
Finally, b —b
clfe) = PO, = [1 ey } .
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Example 44.3
Find £ |4 - 5]

T os(1—em9)

Solution.
Note first that

—S S

e l1—e%—se”

2 s(l—es) 821 —e9)

According to the previous example with ¢ = 1 and b = 1 we find that

L1 |:si2 — 5(16—;;8)] is the sawtooth function shown in Figure 44.2 m

Linear Time Invariant Systems and the Transfer Function

The Laplace transform is a powerful technique for analyzing linear time-
invariant systems such as electrical circuits, harmonic oscillators, optical de-
vices, and mechanical systems, to name just a few. A mathematical model
described by a linear differential equation with constant coefficients of the
form

any(n) + an—ly(n_l) 44 &1y’ —+ apy = bmu(m) + bmflu(m_l) 4 4 blul -+ bou

is called a linear time invariant system. The function y(t) denotes the
system output and the function u(t) denotes the system input. The system is
called time-invariant because the parameters of the system are not changing
over time and an input now will give the same result as the same input later.
Applying the Laplace transform on the linear differential equation with null
initial conditions we obtain

anS"Y (8)+ 18" Y (8)+ - +agY (8) = byps™U(8)+bp_18™ U (8)+ - ~+boU(s).
The function

Y(8)  bps™ + by 18™ 4 4 bys + by
U(s)  aps"+an_15" 1+ 4+ a15 + ag

is called the system transfer function. That is, the transfer function of
a linear time-invariant system is the ratio of the Laplace transform of its
output to the Laplace transform of its input.
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Example 44.4
Consider the mathematical model described by the initial value problem

my" +yy' +ky = f(t), y(0)=0, y'(0)=0.

The coefficients m, v, and k describe the properties of some physical system,
and f(t) is the input to the system. The solution y is the output at time ¢.
Find the system transfer function.

Solution.
By taking the Laplace transform and using the initial conditions we obtain

(ms® + s + k)Y (s) = F(s).

Thus,

(I)(S):F(s) :m82+78+7€. ®)

Parameter Identification
One of the most useful applications of system transfer functions is for system
or parameter identification.

Example 44.5
Consider a spring-mass system governed by

my" +y +ky = f(t), y(0)=0, ¢'(0)=0. (4)

Suppose we apply a unit step force f(t) = h(t) to the mass, initially at
equilibrium, and you observe the system respond as

1 1 1
y(t) = —§e_t cost — Ee_t sint + 5

What are the physical parameters m,~y, and k?

Solution.
Start with the model (4)) with f(¢) = h(t ) and take the Laplace transform of

both sides, then solve to find Y (s) m Since f(t) = h(t), F(s) = %
Hence y( ) .
s
P(s) = 5
F(s) ms2+vys+k
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On the other hand, for the input f(t) = h(t) the corresponding observed
output is

1 1 1
y(t) = —§e_t cost — §e_t sint + —.

2
Hence,
1 1 1
Y (s) zﬁ[—ée_t cost — Ee_t sint + 5]
1 s+1 1 1 . 1
2(s+1)2+1 2(s+1)2+1 2s
B 1
Cs(s2425+2)°
Thus,

_Y(s) 1
(s) = F(s) s2+25+2

By comparison we conclude that m =1, y =2, and k =2 n
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Practice Problems

Problem 44.1
Find the Laplace transform of the periodic function whose graph is shown.

Problem 44.2
Find the Laplace transform of the periodic function whose graph is shown.

Problem 44.3
Find the Laplace transform of the periodic function whose graph is shown.
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Problem 44.4
Find the Laplace transform of the periodic function whose graph is shown.

Problem 44.5
State the period of the function f(¢) and find its Laplace transform where

sint, 0<t<m

ft) = ft+2m) = [f(t), t = 0.

0, w<t<2m

Problem 44.6
State the period of the function f(t) =1—e" 0<t <2, f(t+2)= f(t),
and find its Laplace transform.

Problem 44.7
Using Example 44.3 find

s3 i s(1 —e9)

Problem 44.8

An object having mass m is initially at rest on a frictionless horizontal surface.
At time t = 0, a periodic force is applied horizontally to the object, causing
it to move in the positive x-direction. The force, in newtons, is given by

fo, 0<t< %
f(t) = fE+T)=f(t), t>0.

0, T<t<T
The initial value problem for the horizontal position, x(t), of the object is

maz"(t) = f(t), z(0)=2'(0)=0.



(a) Use Laplace transforms to determine the velocity, v(¢t) = 2/(t), and the
position, z(t), of the object.

(b) Let m =1 kg, fo =1 N, and T = 1 sec. What is the velocity, v, and
position, z, of the object at t = 1.25 sec?

Problem 44.9
Consider the initial value problem

ay" +by' +cy = f(t), y(0)=y(0)=0, t>0

Suppose that the transfer function of this system is given by ®(s) =
(a) What are the constants a, b, and ¢?
(b) If f(t) = e, determine F(s), Y(s), and y(¢).

Problem 44.10
Consider the initial value problem

ay” + by +cy = f(t), y(0)=¢'(0)=0, t>0
Suppose that an input f(¢) = ¢, when applied to the above system produces
the output y(t) = 2(e™* — 1) +t(e " +1), t>0.
(a) What is the system transfer function?

(b) What will be the output if the Heaviside unit step function f(t) = h(t)
is applied to the system?

1
252 +4+55+2"

Problem 44.11
Consider the initial value problem
y'+y +y=ft), y(0)=1y'(0) =0,

where
1, 0<t<1

f(t) = ft+2)=f(t)
1, 1<t<?2

(a) Determine the system transfer function ®(s).
(b) Determine Y'(s).

Problem 44.12
Consider the initial value problem

y"' —4dy=c¢e"+t, y0)=1(0)=1y"(0)=0.
(a) Determine the system transfer function ®(s).

(b) Determine Y'(s).
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Problem 44.13
Consider the initial value problem

Y+ by +cy = h(t), y(0)=yo, v'(0) =1y, t>0.

Suppose that L[y(t)] = Y(s) = Sfi:;i—giég Determine the constants b, ¢, 1o,
and y.
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46 Convolution Integrals

We start this section with the following problem.

Example 46.1
A spring-mass system with a forcing function f(¢) is modeled by the following
initial-value problem

ma" + kx = f(t), x(0) =z, 2'(0) = x,.
Find solution to this initial value problem using the Laplace transform method.

Solution.
Apply Laplace transform to both sides of the equation to obtain

ms?X (s) — mszo — maj + kX (s) = F(s).

Solving the above algebraic equation for X (s) we find

_ _F(s mszg maj
X(S) T ms?+k + ms2+k + ms2+k
1 _F(s) szo_ | L)

wek T

Apply the inverse Laplace transform to obtain

x(t) =L [X(s)]

1. ) F(s) -1 S 1 p-1 1
:Eﬁ {524—%}—'—%05 2y +x,L ok

| 1 |k , fm o | k
:Eﬁ {F(s).82+%}+xocos< E)IH—% Esm( E) t.

Finding £71 {F (s) - ﬁ},i.e., the inverse Laplace transform of a product,

requires the use of the "éoncept of convolution, a topic we discuss in this
section W

Convolution integrals are useful when finding the inverse Laplace transform
of products H(s) = F(s)G(s). They are defined as follows: The convolution
of two scalar piecewise continuous functions f(¢) and g(¢) defined for ¢t > 0
is the integral

(f % g)(t) = / £t — 5)gls)ds.
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Example 46.2
Find f x g where f(t) = ¢~ and g(t) = sint.

Solution.
Using integration by parts twice we arrive at

(f*xg)t) = /t e~ =% sin sds
0

1 —(t—s : t
=3 e (t=%)(sin s — cos 3)]0
et 1,
=5 7t §(smt —cost)

Graphical Interpretation of Convolution Operation
For the convolution

(f % g)(t) = / £t — $)g(s)ds

we perform the following:

Step 1. Given the graphs of f(s) and g¢(s).(Figure 46.1(a) and (b))

Step 2. Time reverse f(—s). (See Figure 46.1(c))

Step 3. Shift f(—s) right by an amount ¢ to get f(t—s). (See Figure 46.1(d))
Step 4. Determine the product f(t — s)g(s). (See Figure 46.1(¢))

Step 5. Determine the area under the graph of f(¢ — s)g(s) between 0 and ¢.
(See Figure 46.1(e))

fs) f(-s)
g(s)
‘@ O "o
f(t-s) ' v(t)
0 -*‘ s 0 t
(d) ()
Figure 46.1
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Next, we state several properties of convolution product, which resemble
those of ordinary product.

Theorem 46.1

Let f(t), g(t), and k(t) be three piecewise continuous scalar functions defined
for ¢t > 0 and ¢; and ¢y are arbitrary constants. Then

(i) f*g=g=* f (Commutative Law)

(i) (fxg)*k= fx*(g=*k) (Associative Law)

(iii) f * (c19 + cok) = c1f x g + cof * k (Distributive Law)

Proof.
(i) Using the change of variables 7 =t — s we find

= [ =t
/ F(P)glt — 1)d

—/0 gt — 1) f(r)dr = (g (D)

(ii) By definition, we have
(f % 9) % R)](t) = / (f * 9)(t — w)k(u)du

_ /Ot UOH Flt—u— w)g(w)kz(u)dw] du.

For the integral in the bracket, make change of variable w = s —u. We have

[(f * g) = k)]( /{/ft—s S—u)k(u)ds}du.

This multiple integral is carried over the region
{(s,u): 0<u<s<t}

as depicted by shaded region in the following graph.
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Figure 46.2

Changing the order of integration, we have
[(f % g) * B)]( /Uft—s (s — u)k(u)du| ds

/ft—s (g*k)(s)ds
* (g % B)|(t)
(iii) We have

(f * (19 + e2k))( / f(t = s)(c1g(s) + cok(s))ds

= /Ot f(t—s)g(s)ds + 62/0 f(t—s)k(s)ds
=a(f*g)(t) + o k)(t) m

Example 46.3
Express the solution to the initial value problem ¢’ + ay = g(t), y(0) = yo
in terms of a convolution integral.

Solution.
Solving this initial value problem by the method of integrating factor we find

t
y(t) = e yo + / e g(s)ds = e yy + e % g(t) m
0

The following theorem, known as the Convolution Theorem, provides a way
for finding the Laplace transform of a convolution integral and also finding
the inverse Laplace transform of a product.
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Theorem 46.2
If f(t) and g(t) are piecewise continuous for ¢t > 0, and of exponential order
at infinity then

Thus, (f = g)(t) = L7 [F(s)G(s)].

Proof.

First we show that f % g has a Laplace transform. From the hypotheses we
have that |f(¢)] < Mje™! for ¢t > C; and |g(t)| < Mae®* for t > Cy. Let
M = MM, and C = C; + C5. Then for t > C we have

[(f+9)(®)] =

Léf@—ﬂﬂﬁﬁréélﬂﬁ—$mwwk

t
SMlMg/ e (t=8) 025 o
0

Mte™t,  a; = ay
— 6a2t—€a1t
e U1 F

This shows that f % g is of exponential order at infinity. Since f and g are
piecewise continuous then the first fundamental theorem of calculus implies
that f* g is also piecewise continuous. Hence, f * g has a Laplace transform.
Next, we have

HU*Q@HZAMK“([f@—ﬂMﬂW)ﬁ

- /t:] /;0 e~ f(t — )g(r)drdt.

Note that the region of integration is an infinite triangular region and the
integration is done vertically in that region. Integration horizontally we find

LI(f*g)(t)] = / : /: e f(t — 7)g(7)dtdr.
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We next introduce the change of variables § = t—7. The region of integration
becomes 7 > 0,¢ > 0. In this case, we have

LI(f*g)(t /O/B i B+ £(8)g(7)drd3

([ ematmar) [ e (3)as)

=G(s)F(s) = F(s)G(s) m
Example 46.4

Use the convolution theorem to find the inverse Laplace transform of

1
(s2 +a?)?’

o () (52)

So, in this case we have, F/(s) = G(s) = > so that f(t) = g(t) = < sin (at).
Thus,

H(s) =

Solution.
Note that

$2+a2 +a

1
573 ——(sin (at) — at cos (at)) m

(f*g)(t) = %/o sin (at — as) sin (as)ds =

Convolution integrals are useful in solving initial value problems with forcing
functions.

Example 46.5
Solve the initial value problem

W' +y=g@), y(0)=3, y(0)=-7

Solution.
Take the Laplace transform of all the terms and plug in the initial conditions
to obtain

4(s*Y (s) =35 +7)+ Y (s) = G(s)

" (48> + 1Y (s) — 125 + 28 = G(s).
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Solving for Y(s) we find

125 — 28 G(s)
YOS D
W 1 @

Hence,

y(t) = 3cos (%) ~ 14sin (%) + % /Ot sin (§>g(t — $)ds.

So, once we decide on a g(t) all we need to do is to evaluate the integral and
we’ll have the solution m
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Practice Problems

Problem 46.1

Consider the functions f(t) = g(t) = h(t), t > 0 where h(t) is the Heaviside
unit step function. Compute f * g in two different ways.

(a) By directly evaluating the integral.

(b) By computing L7 [F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(¢)].

Problem 46.2

Consider the functions f(t) = €' and g(t) = e %, t > 0. Compute f x g in
two different ways.

(a) By directly evaluating the integral.

(b) By computing L7[F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Problem 46.3
Consider the functions f(¢) = sint and g(t) = cost, t > 0. Compute f * g in
two different ways.

(a) By directly evaluating the integral.
(b) By computing L~ [F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Problem 46.4
Compute and graph f x g where f(t) = h(t) and g(t) = t[h(t) — h(t — 2)].

Problem 46.5
Compute and graph f x g where f(t) = h(t) —h(t — 1) and g(t) = h(t — 1) —
2h(t — 2)].

Problem 46.6
Compute t * ¢ * t.

Problem 46.7

Compute h(t) x et x 72t

Problem 46.8

Compute t * e

* Gt.

Problem 46.9

n functions
7\

Suppose it is known that ?L(t) s« h(t) % - h(ﬁ = (O't8. Determine the con-
stants C' and the poisitive integer n.
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Problem 46.10
Use Laplace transform to solve for y(t) :

/t in (£ — \y(\)dA = £2.

Problem 46.11
Use Laplace transform to solve for y(t) :

y(t) — /Ot Ny(N)dA =t

Problem 46.12
Use Laplace transform to solve for y(¢) :

txy(t) =131 —e™).

Problem 46.13
Solve the following initial value problem.

t
y —y = / (t — )\)e)‘d)\, y(0) = —1.
0
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47 The Dirac Delta Function and Impulse Re-
sponse

In applications, we are often encountered with linear systems, originally at
rest, excited by a sudden large force (such as a large applied voltage to an
electrical network) over a very short time frame. In this case, the output
corresponding to this sudden force is referred to as the ”impulse response”.
Mathematically, an impulse can be modeled by an initial value problem with
a special type of function known as the Dirac delta function as the external
force, i.e., the nonhomogeneous term. To solve such IVP requires finding the
Laplace transform of the delta function which is the main topic of this section.

An Example of Impulse Response
Consider a spring-mass system with a time-dependent force f(t) applied to
the mass. The situation is modeled by the second-order differential equation

my" + vy + ky = f(t) (5)

where ¢ is time and y(t) is the displacement of the mass from equilibrium.
Now suppose that for t < 0 the mass is at rest in its equilibrium position, so
y(0) = ¢/(0) = 0. Hence, the situation is modeled by the initial value problem

my" + vy +ky = f(t), y(0)=0, 3'(0)=0. (6)

Solving this equation by the method of variation of parameters one finds the
unique solution

y(t) = / ot — ) f(s)ds (7)

where
e(=7/2m)t gin (t £ _ %)

2

¢(t) =

k _ 2
ma/ 4m?

Next, we consider the problem of strucking the mass by an ”instantaneous”
hammer blow at ¢ = 0. This situation actually occurs frequently in practice-a

system sustains a forceful, almost-instantaneous input. Our goal is to model
the situation mathematically and determine how the system will respond.
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In the above situation we might describe f(t) as a large constant force applied
on a very small time interval. Such a model leads to the forcing function

1
=, 0<t<e
Je(t) = { 0, otherwise

where € is a small positive real number. When ¢ is close to zero the applied
force is very large during the time interval 0 < ¢ < € and zero afterwards. A
possible graph of f.(t) is given in Figure 47.1

/e

&
Figure 47.1

In this case, it’s easy to see that for any choice of € we have

/ fdt =1

lim f.(t) =0, t#0, lir(l)qJr fe(0) = o0. (8)

e—0t

and

Our ultimate interest is the behavior of the solution to equation (5) with
forcing function f.(t) in the limit ¢ — 0F. That is, what happens to the
system output as we make the applied force progressively ”sharper” and
"stronger?”.

Let y.(t) be the solution to equation (5) with f(¢) = f.(¢). Then the unique
solution is given by

ye(t) = /0 Ot — 5) fo(s)ds.
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For t > € the last equation becomes

:%/Oetzﬁ(t—s)ds

Since ¢(t) is continuous for all ¢ > 0, we can apply the mean value theorem
for integrals and write

yﬁ(t) = ¢t — ¢)

for some 0 < 1) < e. Letting ¢ — 07 and using the continuity of ¢ we find

y(t) = lim yc(t) = o(t).

e—0t

We call y(t) the impulse response of the linear system.

The Dirac Delta Function
The problem with the integral

[ ot =153

is that lim._g+ fc(0) is undefined. So it makes sense to ask the question of
whether we can find a function 6(¢) such that

lim (¢ —111rn/g25t—sfE

e—0t e—0t

_ /0 6(t — 5)5(s)ds
=¢(1)

where the role of (¢) would be to evaluate the integrand at s = 0. Note that
because of Fig 47.1 and (8), we cannot interchange the opeartions of limit
and integration in the above limit process. Such a function § exist in the
theory of distributions and can be defined as follows:

If f(¢) is continuous in @ < ¢t < b then we define the function §(¢) by the
integral equation

l%@&ﬁﬁo gg/f Vot — to)d
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The object 6(t) on the left is called the Dirac Delta function, or just the
delta function for short.

Finding the Impulse Function Using Laplace Transform

For € > 0 we can solve the initial value problem (6) using Laplace transforms.
To do this we need to compute the Laplace transform of f.(¢), given by the
integral

0o 1 [€ 1 — ¢—¢s
Llr0) = [ e = [etan =1
0 € Jo €S
Note that by using L’Hopital’s rule we can write
lim £[f.()] = lim —— " —1, §>0
im (t)] = lim =1, s :
e—0t e—0t €S

Now, to find y.(t), we apply the Laplace transform to both sides of equation
(5) and using the initial conditions we obtain

1—e7¢

€S

ms”Y o(s) + ysYe(s) + kYe(s) =

Solving for Y (s) we find

Letting € — 0" we find

Y(s) = ————
() ms? + s+ k

which is the transfer function of the system. Now inverse transform Y'(s) to

find the solution to the initial value problem. That is,

1
=L ——— | = o(2).
y(t) <m52+’ys+k> o(t)
Now, impulse inputs are usually modeled in terms of delta functions. Thus,
knowing the Laplace transform of such functions is important when solving
differential equations. The next theorem finds the Laplace transform of the
delta function.
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Theorem 47.1
With 0(¢) defined as above, if a <t; < b

/ f()o(t —to)dt = f(to).

Proof.
We have

b b
[ sttt = tim [ )0t~ oy

1 to+e

= lim - f(t)dt

e—0t € to
1
= lim —f(t = f(t
Jim = f(to + Se)e = f(to)
where 0 < # < 1 and the mean-value theorem for integrals has been used m

Remark 47.1
Since pe(t—to) = L for tg <t < to+e€ and 0 otherwise we see that fab f(t)o(t—

a)dt = f(a) and [* f(£)8(t — to)dt = O for to > b.

It follows immediately from the above theorem that
L5(t —to)] —/ e ot — to)dt = e, 1y > 0.
0

In particular, if t) = 0 we find
L[6(t)] = 1.
The following example illustrates the formal use of the delta function.

Example 47.1

A spring-mass system with mass 2, damping 4, and spring constant 10 is
subject to a hammer blow at time ¢ = 0. The blow imparts a total impulse of
1 to the system, which was initially at rest. Find the response of the system.
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Solution.
The situation is modeled by the initial value problem

2y" + 4y’ + 10y = 4(t), y(0) =0, ¥'(0)=0.
Taking Laplace transform of both sides we find
25?Y (s) 4+ 4sY (s) + 10Y(s) = 1.
Solving for Y'(s) we find

1

V()= —
(5) 252 + 454+ 10

The impulsive response is

1 1 1
_ -l ot
y(t) =L (5(5—1—1)2—1—22) =1¢ sin2t m

Example 47.2

A 16 1b weight is attached to a spring with a spring constant equal to 2
Ib/ft. Neglect damping. The weight is released from rest at 3 ft below the
equilibrium position. At t = 27 sec, it is struck with a hammer, providing an
impulse of 4 1b-sec. Determine the displacement function y(t) of the weight.

Solution.
This situation is modeled by the initial value problem

1
3—21/" +2y = 46(t — 27), y(0) =3, y'(0) =0.

Apply Laplace transform to both sides to obtain
s?Y (s) — 3s +4Y (s) = 8¢ *™.

Solving for Y(s) we find

3s 6—27rs

52+4+32—|—4'

Y(s) =
Now take the inverse Laplace transform to get

y(t) = LY (s)] = 3cos 2t + 8h(t — 2m) f(t — 27)
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where
1

f(t) = ;Cil {m} = %SIHQt

Hence,
y(t) = 3cos 2t + 4h(t — 2m) sin 2(t — 2m) = 3 cos 2t + 4h(t — 27) sin 2t
or more explicitly

(1) = 3cos 2t, t <27
I\ = 3cos2t +4sin2t, t> 27 m
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Practice Problems

Problem 47.1
Evaluate

(a) [7(1+e")o(t — 2)dt.
(b) [1,(1+e)d(t —2)dt.

Problem 47.2
Let f(t) be a function defined and continuous on 0 < ¢ < co. Determine

(f *8)(t) = / £t — $)6(s)ds.

Problem 47.3

Determine a value of the constant to such that fol sin® [m(t — )]0 (t—1)dt =

|

Problem 47.4
If ff’ t"0(t — 2)dt = 8, what is the exponent n?

Problem 47.5
Sketch the graph of the function g(t) which is defined by ¢(t) = fot fos o(u—
1)duds, 0 <t < 0.

Problem 47.6
The graph of the function ¢(t) = fot e §(t — to)dt, 0 < t < oo is shown.
Determine the constants o and ¢g.

A
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Problem 47.7
(a) Use the method of integarting factor to solve the initial value problem

Yy —y=h(t), y(0)=0.
(b) Use the Laplace transform to solve the initial value problem ¢’ — ¢ =

o(t), ¢(0) = 0.
(c) Evaluate the convolution ¢*h(t) and compare the resulting function with
the solution obtained in part(a).

Problem 47.8
Solve the initial value problem

Y +y=2+0(t—1), y0)=0, 0<t<6.
Graph the solution on the indicated interval.

Problem 47.9
Solve the initial value problem

y'=06(t—1)—46(t—3), y(0)=0, y'(0)=0, 0<t<6.
Graph the solution on the indicated interval.

Problem 47.10
Solve the initial value problem

y' =2y =46(t—1), y(0)=1, ¥/ (0)=0, 0<t <2
Graph the solution on the indicated interval.

Problem 47.11
Solve the initial value problem

v+ 20 +y=46(t—2), y(0)=0, y0)=1, 0<t<6.

Graph the solution on the indicated interval.
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48 Solutions to Problems

Section 41

Problem 41.1
Determine whether the integral fooo
verges, give its value.

1

T dt converges. If the integral con-

Solution.
We have

A
A—o0 0

~ 1 4
/ ——dt = lim dt = lim [arctan?]
0 1+ t2 A—oo [ 1+ 2

= lim arctan A = g

A—o00

So the integral is convergent W
Problem 41.2

Determine whether the integral fooo
verges, give its value.

t

T dt converges. If the integral con-

Solution.
We have

1+t A—oo o 142 2 Aoo

== lim In (1 + A% = o0

A—o0

© ot 1 A4 ot 1
/ dt =3 lim dt = = lim [In(1+ )]
0
1
2
Hence, the integral is divergent m

Problem 41.3
Determine whether the integral fooo e tcos (e7!)dt converges. If the integral
converges, give its value.
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Solution.
Using the substitution u = e~ we find
—A

/ e 'cos (e !)dt = lim — cosudu
0

A—oo 1
= lim [—sin u]ifA = lim [sin1 — sin (e=?)]
A—oo A—o0

=sinl
Hence, the integral is convergent m

Problem 41.4
Using the definition, find L[e*], if it exists. If the Laplace transform exists
then find the domain of F'(s).

Solution.
We have
A A
L[e*] = lim e dt = lim etB=)adt
A—o00 0 A—o00 0
ot(3—9) A
= lim l }
Ao | 3— s 0
eA(3—s) 1
= lim —
A—co { 3—s 3— 8}
! >3
= , S
-3

Problem 41.5
Using the definition, find L[t — 5], if it exists. If the Laplace transform exists
then find the domain of F(s).

Solution.
Using integration by parts we find

L[t — 5] = lim A(t— 5)e *'dt = lim {{—(t——@e‘“r+l/j e—stdt}

A—o00 0 A—o00 S 0 S
—(A — —sA —st7A
— lim ( 5e +5_{62}
A—o0 S S 0
1 5)
=5 -2 s>0m
S S
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Problem 41.6
Using the definition, find E[e(t_l)Z], if it exists. If the Laplace transform
exists then find the domain of F(s).

o) %
/ 6(t_1)26_8tdt _ / e(t_l)Q_Stdt.
0 0

Since lim; oo (t — 1)? — st = limy_, (1 — @ + t%) = 00, for any fixed s

we can choose a positive C' such that (¢t — 1)2 — st > 0 for t > C'. In this case,
et=1?=st > 1 and this implies that fooo (=1 =st gy > fgo dt. The integral on
the right is divergent so that the integral on the left is also divergent by the
comparison theorem of improper integrals. Hence, f(t) = et~ does not
have a Laplace transform m

Solution.
We have

Problem 41.7
Using the definition, find L£[(¢t — 2)?], if it exists. If the Laplace transform
exists then find the domain of F'(s).

Solution.

We have
T

Llt—2)%= lim [ (t—2)% *dt.

T—o00 0

Using integration by parts with u/ = e™*! and v = (¢ — 2)? we find

T 2 —st1T T
t—2 2
/ (t —2)%e 'dt = — {ﬁ] + —/ (t —2)e*'dt
0 s o SJo
4 (T—22s" 2 (7
=_ _ —( )*e + —/ (t — 2)e*Stdt.
S S s Jo
Thus,
T 4 T
lim [ (t—2)% dt=—-+= lim [ (t—2)e *dt.
T—o0 0 S S T—oo 0

Using by parts with v/ = ¢ % and v =t — 2 we find

[ mene [ 21

2
S S 0
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Letting 7" — oo in the above expression we find

4 2 1
lim (t=2)edt = —=+ =, s>0.
s s

Hence,

4 2 2 1 4 4 2
F(3>:‘+_(__+_):§_5_2+?’ s>0m

Problem 41.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F'(s).

0, 0<t<l1
ﬂ”:{t—1, t>1

Solution.
We have

L[f(t)] = lim l?t—lﬁ—%ﬁ.

T—o00 1

Using integration by parts with v/ = ¢ and v =t — 1 we find

r [ (t—1e s 1 St}T e ®

lim [ (t—1)e*dt = lim — e =—, s>0nm
T—oo Jq T—o0 S S 1 S

Problem 41.9
Using the definition, find L[f(¢)], if it exists. If the Laplace transform exists
then find the domain of F(s).

0, 0<t<1
fy =4 t—1, 1<t<?
0, t>2.
Solution.
We have
2 t—1e s 1 2
LIfO] =] (t—1e dt = ! — —e
0] = [ = 1e it
—2s 1
:_es g(e_s—e_%), s#0nm



Problem 41.10
Let n be a positive integer. Using integration by parts establish the reduction

formula .
t"e™? n
/t”e—stdt = — - —/t"‘le‘stdt, s> 0.
s s
Solution.
Let v = e % and v = t". Then u = —L:t and v’ = nt". Hence,
te st n
/t”e—stdt =— + = /t”_le_Stdt, s>0m
s s

Problem 41.11
For s > 0 and n a positive integer evaluate the limits

(a) lim;_,q t"e* (b) limy o t"e

Solution.

(a) 1imt—>0 the st = lirnt—>0 5_; - % = 0.

(b) Using L’Hoépital’s rule repeatedly we find
n!

lim t"e %' = ... = lim =0m
t—00 t—oo sMest

Problem 41.12
(a) Use the previous two problems to derive the reduction formula for the
Laplace transform of f(t) = t",

L[t = gﬁ[t”‘l], s> 0.

(b) Calculate L[tF], for k =1,2,3,4,5.
(c) Formulate a conjecture as to the Laplace transform of f(t),t" with n a
positive integer.

Solution.
(a) Using the two previous problems we find

T n —st]T T
L[t"] = lim et dt = lim {— {t € } T ﬁ/ tn_le—stdt}
0

T—o00 0 T—o00 S 0 S

T

n n

=— lim [ " le*'dt = —L[t"'], s>0
S T—oo 0 S
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(b) We have

£ =7

L) =2 = 5
£ =2 =
LI =51 =
L] =2 = o

(¢) By induction, one can easily show that for n =0,1,2,---
|

L[t"] = 5:+1’ s>0m

From a table of integrals,

/ e sin fudu =e

au Qsin fu — B cos fu
a? + (32

ou @ COS Bu + Bsin fu
a? + 32

/ e cos Pudu =e

Problem 41.13
Use the above integrals to find the Laplace transform of f(t) = coswt, if it
exists. If the Laplace transform exists, give the domain of F(s).

Solution.
We have
. T
—scoswt + wsinwt S
Llcoswt] = lim —<{ e =———7, s>0nm
[ ] T—o0 { { 52 4 w? 10} 52 + w?

Problem 41.14
Use the above integrals to find the Laplace transform of f(t) = sinwt, if it
exists. If the Laplace transform exists, give the domain of F(s).

Solution.
We have
. T
—ssinwt + w cos wt w
Llsinwt] = lim —{ e~ = — >0
[sinwt] T {e [ 52 4+ w? ]o} 2w O "
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Problem 41.15
Use the above integrals to find the Laplace transform of f(t) = cosw(t — 2),
if it exists. If the Laplace transform exists, give the domain of F(s).

Solution.
Using a trigonometric identity we can write f(t) = cosw(t — 2) = coswt cos 2w+
sin wt sin 2w. Thus, using the previous two problems we find

s oS 2w + wsin 2w
82 +w2

Llcosw(t —2)] = , s>0m

Problem 41.16

Use the above integrals to find the Laplace transform of f(t) = ¥ sint, if it
exists. If the Laplace transform exists, give the domain of F'(s).

Solution.
We have
T
Lle*sint] = lim e~ =t sin tdt
T—oo J
. _(s—ay | (s —3)sint + cost T
= lim —<e
T—o0 (S — 3)2 + 1 0
1
S — 3
(s—3p+1 "7 °®

Problem 41.17
Use the linearity property of Laplace transform to find L[5e~" + t + 2¢2].
Find the domain of F(s).

Solution.
We have Lle™™] = =5, s > =7, L[] = &, 5 > 0, and L[e*] = 15, 5 > 2.
Hence,
-7t 2t -7t 2t o 1
LBe " +t+2e*] =5Lle” "]+ L]t] + 2L = —= + 5 + s>2m

s+7 s s—2
Problem 41.18
Consider the function f(t) = tant.
(a) Is f(t) continuous on 0 < ¢t < oo, discontinuous but piecewise continuous

on 0 <t < oo, or neither?
(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < 00?
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Solution.
(a) Since f(t) = tant = 52L and this function is discontinuous at t = (2n +
1)5. Since this function has vertical asymptotes there it is not piecewise
continuous.
(b) The graph of the function does not show that it can be bounded by

exponential functions. Hence, no such numbers a and M m

Problem 41.19

Consider the function f(t) = t?e~".

(a) Is f(t) continuous on 0 < ¢t < 0o, discontinuous but piecewise continuous
on 0 <t < oo, or neither?

(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < 00?

Solution.

(a) Since t? and e~* are continuous everywhere, f(t) =t
0<t<oo.

(b) By L’Hopital’s rule one has

2e~t is continuous on

Since f(0) = 0, f(t) is bounded. Since f'(t) = (2t — t*)e~?, f(t) has a
maximum when ¢ = 2. The value of this maximum is f(2) = 4e~2. Hence,
M=4e?anda=0mnm

Problem 41.20 )

Consider the function f(t) = BQ%H

(a) Is f(t) continuous on 0 < ¢t < 0o, discontinuous but piecewise continuous
on 0 <t < oo, or neither?

re there fixed numbers a an such that t) < Me* tor 0 <t < oof
(b) Are there fixed b d M h that |f(t)| Me® for 0 ?

Solution.

(a) Since et? and e* +1 are continuous everywhere, f(t) =
on 0 <t < oo.

(b) Since € + 1 < e + ¢ = 2e%, f(t) > Let’e 2 = Le =2 But for t > 4

2
we have 12 — 2t > % Hence, f(t) > %e%. So f(t) is not of exponential order
at infinity m

2

o . :
2 18 continuous
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Problem 41.21

Consider the floor function f(t) = [t], where for any integer n we have
[t] =nforalln <t<n-+1.

(a) Is f(t) continuous on 0 < ¢ < oo, discontinuous but piecewise continuous
on 0 <t < oo, or neither?

(b) Are there fixed numbers a and M such that |f(t)] < Me™ for 0 <t < 00?

Solution.
(a) The floor function is a piecewise continuous function on 0 < ¢ < co.
(b) Since [t] <t <e'for0>t<oowefind M =1landa=1n

Problem 41.22

Find £ (2) |

Solution.

Sinceﬁ( L ): L s> a we find

s—a s—a’

1
£—1(532) =371 (S_2> =3e* t>0m

Problem 41.23
Find £7! (—S% + L) .

s+1

Solution.
Since L[t] = %4, s> 0and £(-L) = -1, 5> a we find

S

2 1 1 1
—1 = — —1 - —1
£ ( 52+3+1) 2L <s2>+[’ (s—l—l)

=—2+e L t>0m

Problem 41.24
Find £! (54%2 + S_%) )

Solution.
We have

2 2 1 1
L1 =2L7! 2L —— ) =2(e7H+e®), t >0
(3+2+5—2) <3+2>+ s—2 (77 4e™), 12 0m
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Section 42

Problem 42.1
Use Table £ to find L£[2e" + 5].

Solution.

2 >
L[2e" + 5] = 2L[e'] + 5L[1] = 1ty s>1m
Problem 42.2
Use Table £ to find L[e33h(t — 1)].
Solution.
L[ 3h(t — 1) = L[SVt — 1)] = e7L[e¥] = 6—3, s>3m
P

Problem 42.3
Use Table £ to find L[sin’® wt].

Solution.
1 — cos 2wt 1 1/1 s
.2
Problem 42.4
Use Table £ to find L[sin 3¢ cos 3t].
Solution.
in 6¢ 1
L[sin 3t cos 3t] = L [8126 } = iﬁ[sin(it] =2 i 35 5> Om
Problem 42.5
Use Table £ to find L[e?* cos 3t].
Solution.
o B 5s—2
E[e COS3t] = m, s>2n
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Problem 42.6
Use Table £ to find L[e*(t* + 3t +5)].

Solution.

2 3 5
£k%ﬁ+&+@b:a&%h3a&ﬂ+mwﬁh:@_4P+@_4P+8_4,s>4l

Problem 42.7
Use Table £ to find L7525 + ).

s2+425
Solution.
10 4 5
- = 2L [——]+4L7! = 2sinbt+4e*, t >
Claraty gl =% g gt g5l = 2sindttde”, 2 0m
Problem 42.8
Use Table £ to find £7*[ 5]
Solution.
5 5 3! 5
E—l — _E—l — _ 3tt3 t > O
Goanl =6f gl by t20m

Problem 42.9
Use Table £ to find £71[&=].

s—9

Solution.

e 0, 0<t<?2

— 9(t-2) _9)
3—9]_6 h(t 2)—{69(t2) t>2m

)

LY

Problem 42.10 B
Use Table £ to find £ [<—&ED],

52416
Solution.
We have
e 3525+ 7) e 3%s 7 e 354
L2 ot —L1
[ 52+ 16 ] [824-16]_'_4 [52—|—16]

=2cos4(t — 3)h(t —3) + Z sind(t —3)h(t—3), t>0m
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Problem 42.11
Graph the function f(t) = h(t — 1) + h(t — 3) for t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Solution.
Note that
0, 0<t<1
ft) = 1, 1<t<3
2, t>3

The graph of f(t) is shown below. Using Table £ we find

—S —3s

LIFB)] = LIh(t — 1)] + L[h(t — 3)] = 68 + 67 s>0m
2 P —
1 o—
1 3

Problem 42.12
Graph the function f(t) = t[h(t — 1) — h(t — 3)| for ¢t > 0, where A(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Solution.
Note that
0, 0<t<«1
fHy=4t 1<t<3
0, t>3

The graph of f(t) is shown below. Using Table £ we find

LIf)] =L[(t—1)h(t—1)+h(t—1)— (t —3)h(t — 3) — 3h(t — 3)]
=L[(t — Dh(t —1)] + L[h(t — 1)] — L[(t — 3)h(t — 3)] — 3L[h(t — 3)]
e 3e73¢

S - s>1m
52 s 52 s

V)
vl
w
w0
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Problem 42.13
Graph the function f(t) = 3[h(t — 1) — h(t —4)] for t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Solution.
Note that
0, 0<t<1
fy=< 3, 1<t<4
0, t>4

The graph of f(t) is shown below. Using Table £ we find

LA = 3L — 1)] — 3L[h(t — 4)] = 36: _ 36:8, s>0m

3| o—m
2

Problem 42.14
Graph the function f(t) = |2 —t|[h(t — 1) — h(t — 3)] for ¢ > 0, where h(t) is
the Heaviside step function, and use Table £ to find L[f(¢)].

Solution.
Note that
0, 0<t<1
fo)y=«¢ [2—t], 1<t<3
0, t>3
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The graph of f(t) is shown below. Using Table £ we find

LIf@)] =2 —-t)h(t—1)+2(t —2)h(t —2) — (t — 2)h(t — 3)
=L[—(t—1h(t=1)+h(t —1)+2(t —2)h(t — 2) — (t — 3)h(t — 3) — h(t — 3)]
=— L[t —D)h(t — )]+ LAt — 1)] + 2L][(t — 2)h(t — 2)]
—L[(t —3)h(t — 3)] — L[h(t — 3)]

e~ e s 26723 6735 6738

T e T T _82_S7S>0.
l v

, @ >
1 2 3

Problem 42.15
Graph the function f(t) = h(2—t) for t > 0, where h(t) is the Heaviside step
function, and use Table £ to find L[f(t)].

Solution.

Note that
1, 0<¢t<2

f<t)_{(): t>2

The graph of f(t) is shown below. From this graph we see that f(t) =
h(t) — h(t —2)h(t — 2). Using Table £ we find

1— 6725

LIFO)] = LIA)] = LIA(t = DAt = 1)] =

, s>0m
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Problem 42.16
Graph the function f(t) = h(t — 1) + h(4 — t) for t > 0, where h(t) is the
Heaviside step function, and use Table £ to find L[f(t)].

Solution.
Note that
1, 0<t<1
fy=4 2, 1<t<4
1, t>4

The graph of f(t) is shown below. Using Table £ we find

LIf(t)] = LIh(t—1)]+L[(A—t)] = e:+/04 ety — 1 F e_l_ “ ssom

Problem 42.17
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of

f(t).

Solution.
From the graph we see that

ft)=({t—=2)h(t—2)— (t —3)h(t —3) — h(t — 4)
Thus,

LIF(H)] = L[(t—2)h(t—2)]—L[(t—3)h(t—3)]| - L[h(t—4)] = _E —,s>0m
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Problem 42.18
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table £ to calculate the Laplace transform of

f(t).

2 (———
1 [ S—
N 2
0 1 2 3 4

Solution.
From the graph we see that

f(t) =h(t—1)+ h(t —2) — 2h(t — 3).
Thus,

LI = Llh(t—1)] = 2L[h(t—3)] + Llh(t—2)] = 26;35 e s om

Problem 42.19
Using the partial fraction decomposition find £+ [m] .
Solution.

Write
12 A B

= + .
(s—=3)(s+1) s—3 s+1

Multiply both sides of this equation by s — 3 and cancel common factors to

obtain

12 —
A4 B(s —3) |
s+1 s+1
Now, find A by setting s = 3 to obtain A = 3. Similarly, by multiplying both

sides by s + 1 and then setting s = —1 in the resulting equation leads to
B = —3. Hence,

%:?’Cmil)'
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Finally,

e R e R

=3 -3¢t t>0m

Problem 42.20
Using the partial fraction decomposition find £7* [2212@:;5} .

Solution.

Write
24 A B

(s —3)(s+3) 8—3+8+3.

Multiply both sides of this equation by s — 3 and cancel common factors to
obtain

24 B(s —
s+ 3 543
Now, find A by setting s = 3 to obtain A = 4. Similarly, by multiplying both

sides by s + 3 and then setting s = —3 in the resulting equation leads to
B = —4. Hence,

%ﬂﬁis‘si?)'

o[ [ [

=4[e3=%) _ e BEIp(t —5), t>0m

Finally,

Problem 42.21
Use Laplace transform technique to solve the initial value problem

Y +4y =g(t), y(0)=2

where
0, 0<t«1
g(t) = 12, 1<t<3
0, t>3
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Solution.
Note first that g(t) = 12[h(t — 1) — h(t — 3)] so that

Clo(t)] = 12L[h(t — 1)) — 122[h(t —3)) = 2 =) oy

S

Now taking the Laplace transform of the DE and using linearity we find
LIy +4L[y] = LIg(t)]-

But L[y] = sLly] — y(0) = sL]y] — 2. Letting L]y] = Y (s) we obtain

e~ — e—3s
sY(s) —24+4Y(s) = 12
s
Solving for Y'(s) we find
2 e~ — 6—35
(s) =
s+4 s(s+4)
But
-1 2 —9 —4t
s+4
and

el )

—s —3s —S —3s
—307! [6 } _3c! [6 ] 3L { ¢ } 43071 [6 }
S S s+4 s+ 4

=3h(t — 1) — 3h(t — 3) — 3e " Vh(t — 1) + 3e 4 n(t — 3)

Hence,
y(t) = 2e7 4+ 3[h(t—1)—h(t—3)]|=3[e *Vh(t—1)—e Dt —3)], t > O m

Problem 42.22
Use Laplace transform technique to solve the initial value problem

y'— 4y =¢€", y(0)=0, y'(0)=0.
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Solution.
Taking the Laplace transform of the DE and using linearity we find

Lly"] — 4L[y] = L[e”].

But L[y"] = s?L[y] — sy(0) — y/'(0) = s*>L[y]. Letting L[y] = Y (s) we obtain

Solving for Y(s) we find

1
(s —3)(s—2)(s+2)

Y(s) =

Using partial fraction decomposition

1 A N B n C
(s—3)(s—2)(s+2) s—3 s5+2 s5—2

WeﬁndA:%, B=2 andC:—}l.Thus,

207

y(t) =L (5_3)(Si2)<8+2)} = %E‘l LiB] +%£‘1 Lig} _iﬁ‘l Liz}

1 3t 1 —2t 1 2t
T Pt
5¢ T3¢ 6o =un
Problem 42.23

Obtain the Laplace transform of the function f; F(A)dX in terms of L[f ()] =
F(s) given that f02 FN)dX = 3.

We b
c {/:f(/\)d)\} —r [/Otf(A)dA—/:f(A)dA]
:Fis i
:is) — §, s>0m
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In Problems 43.1 - 43.4, give the form of the partial fraction expansion for
F(s). You need not evaluate the constants in the expansion. However, if the
denominator has an irreducible quadratic expression then use the completing
the square process to write it as the sum/difference of two squares.

Problem 43.1

s2+3s+1
F = .
)= G- 22
Solution.
A A A B B
F(s) = 1 2 A LB

Problem 43.2

2 _
F(s) = 5% +5s—3 ‘
(s2416)(s — 2)
Solution.
A A B
F(s) = 15 + Az (.

52+ 16 s—2
Problem 43.3

F(s) = s3—1
YT
Solution.

. A13 + AQ AgS + A4 Bl BQ

F(s) —
(s) (s2+1)2 s2+1 +(s—|—4)2+s+4.

Problem 43.4

st 4552425 -9
(s2+8s+17)(s — 2)%

F(s) =
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Solution.

A1 A2 Bls -+ BQ
F(s) —
=G tie Teres ™
Problem 43.5
Find £ |
Solution.
Using Table £ we find £71 [(8:1)3] =l t>0m

Problem 43.6
: —1 25—3
Find £ [52—35-1—2} :
Solution.
We factor the denominator and split the rational function into partial frac-
tions:

25—3 A B

(s—1)(s—2) -1 52
Multiplying both sides by (s — 1)(s — 2) and simplifying to obtain

2s —3=A(s—2)+ B(s—1)
=(A+ B)s —2A— B.

Equating coefficients of like powers of s we obtain the system

A+B = 2
—2A-B = -3.

Solving this system by elimination we find A = 1 and B = 1. Now finding
the inverse Laplace transform to obtain

2s — 3 1 1
-1 _ -l -1 _ 2 4
L {—(5_1)@_2)} L {—3—1}+£ [—3—2} e+et, t>0.m

Problem 43.7

Find £71 |44
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Solution.
We factor the denominator and split the rational function into partial frac-
tions:

452 +s+1 A Bs+C
s(s?+1) :;+ s2+1°
Multiplying both sides by s(s* + 1) and simplifying to obtain
45 + s+ 1=A(s* +1) + (Bs + C)s
=(A+ B)s* + Cs + A.

Equating coefficients of like powers of s we obtain A+ B=4, C =1, A=1.
Thus, B = 3. Now finding the inverse Laplace transform to obtain

452 + s+ 1 1 S 1
1 _p-1 |t 1 -1
o] = e [Fnl e [

=1+ 3cost+sint, t>0m

Problem 43.8
: 52 S
Find £! [ﬁ} )

Solution.
We factor the denominator and split the rational function into partial frac-
tions:

s> +6s+8 _ Bis+Cy Bys+Cy
(s24+4)2  s2+4 (s2+4)2
Multiplying both sides by (s? 4+ 4)? and simplifying to obtain
§% + 65+ 8 =(Bys + C1)(s* +4) + Bys + Csy
=B;s° + C15> + (4B + By)s + 4Cy + Cs.

Equating coefficients of like powers of s we obtain B; = 0, = 1, By = 6,
and Cy = 4. Now finding the inverse Laplace transform to obtain

[ +6s+38 B 1 B
o) = ) e

S
SR (Y vl p—
2 +4>2] * [<s2 +4>2}
Lnor 6 (Lsimat) 44 1['2t 2t cos 21]
—2 Sin 4 S1n 16 S111 COS

3 3 1
:§t81n2t+ Zsin?t— §t0052t, t>0nm
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Problem 43.9
Use Laplace transform to solve the initial value problem

y + 2y = 265sin 3t, y(0) = 3.

Solution.
Taking the Laplace of both sides to obtain

L[y'] + 2L[y] = 26L]sin 3t].

Using Table £ the last equation reduces to

SY (s) — y(0) + 2Y(s) = 26 (82 3+ 9) |

Solving this equation for Y'(s) we find

3 N 78
s+2  (s+2)(s2+9)

Y(s) =

Using the partial fraction decomposition we can write

1 A Bs+(C

(s +2)(s2+9) st2 249

Multipliying both sides by (s + 2)(s* + 9) to obtain

1=A(s*+9) + (Bs + C)(s + 2)
=(A+ B)s>+ (2B +C)s +9A +2C.

Equating coefficients of like powers of s we find A+ B =0, 2B+ C =0, and

9A + 2C = 1. Solving this system we find A = %, B = —1—13, and C' = %
Thus,
9 S 3
Y(s) = —6 4 .
) =373 (32+9> * (s2+9>
Finally,

y(t) =LY (s)) = 9L L Jlr 2} —6L7" L2 i 9} +4L7! L;ig]

= 96_2t—6C083t+4Sin3t, t>0nm
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Problem 43.10
Use Laplace transform to solve the initial value problem

v + 2y =4t, y(0) =3.

Solution.
Taking the Laplace of both sides to obtain

Lly'] +2L[y] = 4L[t].

Using Table £ the last equation reduces to
4
sY(s) —y(0) +2Y(s) = =

Solving this equation for Y'(s) we find

3 . 4
s+2  (s+2)s?

Y(s) =

Using the partial fraction decomposition we can write

1 A Bs+ C

(3—1—2)32_5—|—2+ 52

Multipliying both sides by (s + 2)s* to obtain

1=As*+(Bs+C)(s+2)
= (A+ B)s* + (2B + C)s + 2C

Equating coefficients of like powers of s we find A+ B =0, 2B+ C =0, and
2C' = 1. Solving this system we find A = }l, B = —i, and C' = % Thus,

4 1 1
Y(s) = 42

s+2 s S

Finally,

y(t) = L7HY (s)] = 4L~ L Jlr 2} — L7} H +2L£71 [l]

=4 142, t>0m
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Problem 43.11
Use Laplace transform to solve the initial value problem

Y+ 3y +2y=6e", y(0) =1, y/(0) =2.

Solution.
Taking the Laplace of both sides to obtain

Lly"] + 3Ly +2L[y] = 6L[e].

Using Table £ the last equation reduces to

6
s?Y (s) — sy(0) — /(0) + 3(sY (s) — y(0)) +2Y (s) = p——
Solving this equation for Y'(s) we find
545 6 s2+6s+ 11

Y(s) = + =

(s+1)(s+2) (s+2)(s+1)2 (s+1)2(s+2)
Using the partial fraction decomposition we can write

s+ 65+ 11 A B C

GH2(5+1)? s+2 s+l s+

Multipliying both sides by (s + 2)(s + 1)? to obtain

s?+6s+11=A(s+1)>+B(s+1)(s+2)+C(s+2)
=(A+B)s*+(2A+3B+(C)s+ A+2B+2C

Equating coefficients of like powers of s we find A+B =1, 2A4+3B+C = 6,
and A + 2B + 2C' = 11. Solving this system we find A = 3, B = —2, and
C = 6. Thus,

3 2 6

s+2_s+1+(s+1)2'

Y(s) =

Finally,

y(t) = L7HY (s)] = 3L71 L i 2} —2L7! L i 1] +6L£71 {

=3¢ 2 — 27 4 6te ", t>0m
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Problem 43.12
Use Laplace transform to solve the initial value problem

y" + 4y = cos2t, y(0) =1, y'(0) = 1.

Solution.
Taking the Laplace of both sides to obtain

L[y"] 4+ 4L]y] = L]cos 2t].

Using Table £ the last equation reduces to

S

s*Y (5) — sy(0) — /' (0) +4Y (s) = a0

Solving this equation for Y'(s) we find

s+ 1 S

Y = .
(5) s2+4 + (s2+4)2

Using Table £ again we find

y(t) = L7 inéj + %5_1 {5214} e [Wl)z}

1 t
= cos 2t + ésith—i-Zsith, t>0nm

Problem 43.13
Use Laplace transform to solve the initial value problem

y' =2y +y=¢€* y(0)=0, y'(0) =0.

Solution.
Taking the Laplace of both sides to obtain

Lly"] = 2Ly + L[y] = L[*].

Using Table £ the last equation reduces to

1
s—2

s*Y (s) — sy(0) — /' (0) — 25Y(s) + 2y(0) + Y (s) =
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Solving this equation for Y'(s) we find

1
(s =1)*(s —2)°

Y(s) =

Using the partial fraction decomposition, we can write

A B C
Y(S)_s—1+(s—1)2+s—2'

Multipliying both sides by (s — 2)(s — 1)? to obtain

1=A(s—1)(s—2)+B(s—2)+C(s — 1)
=(A+0)s+(-3A+B—-2C)s+2A—-2B+C

Equating coefficients of like powers of s we find A+C =0, —3A+B—-2C = 0,
and 2A — 2B + C' = 1. Solving this system we find A = -1, B = —1, and

C = 1. Thus,
1 1 1
Y(s)=— — :
(5) s—1 (3—1)2+s—2

Finally,

y(t) =LY (s)] = —L7 Lil} - L [(3_11)2} +L7 LiQ}

= —tef +e* t>0m

Problem 43.14
Use Laplace transform to solve the initial value problem

y'+9y =g(t), y(0)=1, y(0) =3
where
() = 6, 0<t<m
W= 0, n<t<oo

Solution.
Taking the Laplace of both sides to obtain

Lly"] +9L[y] = L[g(t)] = 6L[A(t) — h(t — 7)].
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Using Table £ the last equation reduces to

6 6 —TSs
$Y (5) = sy(0) =/ (0) + 9V (s) =~ — 68 .
Solving this equation for Y'(s) we find
3 6
Y(s) = 2 (1—e™),

+
$2+9  s(s249)
Using the partial fraction decomposition, we can write

6 _A Bs+C

s(s?+9) . s2+9

Multipliying both sides by s(s? 4+ 9) to obtain

6=A(s>+9)+ (Bs+ C)s
=(A+B)s*+Cs+9A

Equating coefficients of like powers of s we find A+ B = 0, C' = 0, and
9A = 6. Solving this system we find A = %, B = —%, and C' = 0. Thus,

Y(s)= = 4> (1—5%)(21—2 s )

5249 32—1—97L 35 35249

Finally,
1 : 2 2
y(t) = L7[Y(s)] = cos 3t + sin 3t + 5(1 —cos 3t) — 5(1 —cos3(t — m))h(t — )
2 2
= cos 3t + sin 3t + 5(1 — cos 3t) — 5(1 +cos3t)h(t—m), t>0m
Problem 43.15

Determine the constants «, 3, yo, and y(, so that Y'(s) =
transform of the solution to the initial value problem

2s—1

o5 is the Laplace

y' +ay + By =0, y(0) =y, ¥'(0) =y

Solution.
Taking the Laplace transform of both sides we find

sY (s) — syo — yo + asY (s) — ayo + BY (s) = 0.
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Solving for Y(s) we find

syo+ (Yo +ogo) 25 —1
s2+as+ 0 s2+s+2

Y(s) =

By identification we find a =1, =2, yp =2, and y; = -3 n

Problem 43.16
Determine the constants «, (3, yo, and gy, so that Y'(s) = (5%)2 is the Laplace
transform of the solution to the initial value problem

y'+ay + By =0, y(0) = yo, ¥'(0) =y

Solution.
Taking the Laplace transform of both sides we find

sY (s) — syo — yo + asY (s) — ayo + BY (s) = 0.
Solving for Y'(s) we find

syo + (o + avo) s

Y(s) = = .
(s) s24+as+f3 s24+2s+1

By identification we find a =2, B =1, yp=1, and yy = —2 m
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Section 44

Problem 44.1
Find the Laplace transform of the periodic function whose graph is shown.

Solution.
The function is of period T' = 2. Thus,

1 2 1 —st72
3 1
3/ e tdt +/ e *dt = {——e_ﬂ — {e } =—(3-2e%—e ).
0 1 S 0 s 1y s

Hence,

3—2e % — %

I =

Problem 44.2
Find the Laplace transform of the periodic function whose graph is shown.
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Solution.
The function is of period T" = 4. Thus,

1 3 1 _st13
2 5 1

2/ e“dt+/ e sdt = [__est} _ {e } =—(2—ef =),
0 1 S 0 s 1y S

Hence,

2 _ S 6735

L[f(t)] - S(]_ . 6_45)

Problem 44.3
Find the Laplace transform of the periodic function whose graph is shown.

Solution.
The function is of period T" = 2. Thus,

2 2 2
/ (t—1)e*tdt = / te*dt — / e tdt
1 1 1

|: t L B_St e—st:|2
= ——e — +

= S+ s)e 1]
Hence, B
LIF(1) = —[1 = (s + 1)e ] m

N s2(1 — e=2)

Problem 44.4
Find the Laplace transform of the periodic function whose graph is shown.
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Solution.
The function is of period T' = 2. Thus,

/2 te *dt = {—é(st + 1)€_St:| = _5_12[(28 + e 2 —1].
Hence, .
L[f(t)] = S0 [1—(2s+1)e | m

Problem 44.5
State the period of the function f(¢) and find its Laplace transform where

sint, 0<t<m

ft) = ft+2m) = [f(t), t =2 0.

0, w<t<2m

Solution.
The graph of f(t) is shown below.

AWAVA

0 T 2r 3r 4rn St
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The function f(t) is of period T' = 27. The Laplace transform of f(¢) is

fo7r sin te~stdt

1— 6—27rs

LIf@)] =

Using integration by parts twice we find

e—st
/sin te”*tdt = — e (cost + ssint)

Thus,
™ efst T
/ sinte *dt = | ————(cost + ssint)
0 1+ s2 0
B e*ﬂ'S —"_ 1
1482 1482
lt+e™
1482
Hence,
1 + 6771'8

LIf@)] =

T+ s2)(1—e2m)

Problem 44.6
State the period of the function f(t)=1—¢*, 0<t <2, f(t+2)=f(t),
and find its Laplace transform.

Solution.
The graph of f(t) is shown below

//

2 4
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The function is periodic of period T' = 2. Its Laplace transform is

_ f02(1 — e‘t)e_“dt.

Lf@)]

1—e 2
But
2 —st72 ~s+t72 1
/ (1—€7t)€75tdt: |:6 } + |:6 :| _ —(1—6728)— (1_672(s+1)).
0 —S 0 s+ 1 0 S S + 1
Hence,
1 1 — e 26+
Lf®)] =

Problem 44.7
Using Example 44.3 find

Solution.
Note first that

s?—s n e’ 1 1 se”?
3 s(1—es) s 2 2(l—e))

Using Example 23.3, we find

ft) =1-g(t)
where ¢(t) is the sawtooth function shown below

Ji&)

a /

b ey g eIt
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Problem 44.8

An object having mass m is initially at rest on a frictionless horizontal surface.
At time t = 0, a periodic force is applied horizontally to the object, causing
it to move in the positive x-direction. The force, in newtons, is given by

fo, 0<t<7Z
F) = 4T = f1), 1> 0.
0, L<t<T
The initial value problem for the horizontal position, z(t), of the object is

mz"(t) = f(t), z(0)=2'(0)=0.

(a) Use Laplace transforms to determine the velocity, v(t) = 2/(¢), and the
position, z(t), of the object.

(b) Let m =1 kg, fo =1 N, and T = 1 sec. What is the velocity, v, and
position, z, of the object at t = 1.25 sec?

Solution.
(a) Taking Laplace transform of both sides we find ms2X (s) = JoJo” e 7t { 26 ;;fdt —
% (1 ee SST> Solving for X (s) we find
Bl 1
most 14em02
Also
Jo 1 1 1 1 1

0=, [ o

Since X (s) %S%ﬁ = LLIELIf(t)] = L[t * f(t)] we have
x@zémﬂmzi/@ﬂwwm
(b) We have x(l 25) fo Z_“ du+f1 w)dw = £ meters and v(1.25) =

fo du-fo dt+f1 dt =2 m/sec m
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Problem 44.9
Consider the initial value problem

ay’ +by' +cy= f(t), y(0)=y'(0)=0, t>0.

1

Suppose that the transfer function of this system is given by ®(s) = 377572

(a) What are the constants a, b, and ¢?
(b) If f(t) = e, determine F(s), Y(s), and y(t).

Solution.
(a) Taking the Laplace transform of both sides we find as?*Y (s) + bsY (s) +
cY(s) = F(s) or

Y(s) 1 B 1
F(s) as?+bs+c 2s2+5s5+2

By identification we find a = 2, b =5, and ¢ = 2.

(b) If f(t) = ™" then F(s) = L[e™"] = 5. Thus,

1

Y(s) = ®(s)F(s) = (s+1)(282 + 55 +2)

Using partial fraction decomposition

1 A B C

(s+1)(2s+1)(s+2) s+1+2s—|—1+5+2

Multiplying both sides by s 4+ 1 and setting s = —1 we find A = —1. Next,
multiplying both sides by 25+ 1 and setting s = —1 we find B = 3. Similarly,
multiplying both sides by s + 2 and setting s = —2 we find C' = % Thus,

1 2 1 1 1
Ne_ - | L
y(t) £ [s+1]+3£ [s+%]+3£ L+2}

2+ 1
= — —t —e 2 —_ —2t t>0
e+ 36 + 36 ,020m

Problem 44.10
Consider the initial value problem

ay" +by' +cy = f(t), y(0)=y(0)=0, t>0
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Suppose that an input f(t) = ¢, when applied to the above system produces
the output y(¢t) =2(e* — 1) +t(e7*+ 1), t>0.

(a) What is the system transfer function?

(b) What will be the output if the Heaviside unit step function f(t) = h(t)
is applied to the system?

Solution.
(a) Since f(t) = ¢ we find F(s) = Aslo Y(s) = Lly(t)] = L[2e7F =2 +
e+l =H -t mmt e —1 e But @(s) = K = (s+11)2
(b) If f(t) = h(t) then F(s) = ¢ and Y(s) = ®(s)F(s) = s(s+1 . Using
partial fraction decomposition we find
s(s+1)2 s s+1  (s+1)2

1=A(s+1)>+ Bs(s+1) + Cs

1=(A+B)s*+(2A+B+C)s+ A
Equating coefficients of like powers of s we find A = 1, B = —1, and

C = —1. Therefore,

1 1 1
Y(s)= - — -
(5) s s+1 (s+1)2

and
yt)=L7'Y(s)]|=1—e"'—te"t>0m

Problem 44.11
Consider the initial value problem

where

L l<t<?

(a) Determine the system transfer function ®(s).
(b) Determine Y'(s).
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Solution.
(a) Taking the Laplace transform of both sides we find

s’Y (s) + sY(s) + Y (s) = F(s)

so that
O(s) = ;8 TP —i—ls +1
(b) But
/0 Je *tdt = /0 e dt — / e tdt
-]
—( Yooy %(6_28 —e)
( —e*)?
Hence, 1 —5)2 1 -5
F(s) = 5((1__662)5) B s((ljrees))
and

(1-c)
sAte) (st

Problem 44.12
Consider the initial value problem

—dy=c"+1, y(0)=y(0)=y"(0)=0.

(a) Determine the system transfer function ®(s).
(b) Determine Y (s).

Solution.
(a) Taking Laplace transform of both sides we find

s*Y (s) — 4Y (s) = F(s).
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Thus,

_Y(s) 1
)= T T o4
(b) We have
At B r s24+s—1
F(s) = Lle" +t] = R N
Hence,
2 _
Y(s) = s°+s—1 .

Problem 44.13
Consider the initial value problem

y' + by +cy=h(t), y0)=uyo v'(0)=1yy t>0.

Suppo/se that Lly(t)] = Y(s) = S;fjfgi;s Determine the constants b, ¢, yo,
and yj.

Solution.
Take the Laplace transform of both sides to obtain

1
s*Y (s) — syo — yp + bsY (s) — byo + cY(s) = ~.
s

Solve to find

~ s%yo + s(yo + byo) + 1
n s3 + bs? + cs

B s24+2s+1

T s34+ 3s242s°

Y (s)

By comparison we find b=3, ¢ =2, yp=1,and y, +byp=2o0ry, = —1n
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Section 45

Problem 46.1

Consider the functions f(t) = g(t) = h(t), t > 0 where h(t) is the Heaviside
unit step function. Compute f * g in two different ways.

(a) By directly evaluating the integral.

(b) By computing L7[F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have

(f*xg)(t /ft—s th(t—s)h(s)ds:/Otds:t,tzO.

0

(b) Since F(s) = G(s) = L]h(t)] =
L5 =tt>0m

» =

we have (f * g)(t) = L7'[F(s)G(s)] =

Problem 46.2

Consider the functions f(t) = €' and g(¢t) = e *, ¢t > 0. Compute f g in
two different ways.

(a) By directly evaluating the integral.

(b) By computing L7[F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have

(f*g)(t) = [ f{t—s)g(s)ds = /0 e 2 ds

(b) Since F(s) = L[e'] = A7 and G(s) = L[e™*] = o5 we find (f * g)(t) =
fﬁi_é[F(S)G( sl = L7

m] Using partial fractions decomposition we

1 1,01 1
(s—1)(s+2) 3



Thus,

1

(F)0) = PG = 3 (€] - £ 5] ) = S — e = om

Problem 46.3

Consider the functions f(¢) = sint and g(t) = cost, t > 0. Compute f * g in
two different ways.

(a) By directly evaluating the integral.

(b) By computing L7[F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) Using the trigonometric identity 2sinpcosq = sin (p + q) +sin (p — q) we
find that 2sin (t — s) cos s = sint + sin (¢ — 2s). Hence,

(f*xg)(t) :/0 f(t—s)g(s)ds = /0 sin (t — s) cos sds

1 [ '
:_[/ sintds + / sin (t — 2s)ds]
2°Jo 0

tsint 1 /t ,
= + - sin udu
2 4 ),

_tsint

t > 0.

(b) Since F(s) = L[sint] = 5'5 and G(s) = L[cost] = Z°7 we find

s2+1
S

t .
m] :§Slnt,t20.

(f % 9)(t) = L7F(s)G(s)] = L7']

Problem 46.4
Compute and graph f * g where f(t) = h(t) and g(t) = t[h(t) — h(t — 2)].

Solution.

Since f(t) = h(t), F(s) = 1. Similarly, since g(t) = th(t) — th(t — 2) =
th(t) — (t —2)h(t —2) —2h(t —2), G(s) = & — < — 22 Thus, F(s)G(s) =
513 e 258;25. It follows that

(f xg)(t) = § - (t_22>2h<t_ 2) = 2(t = 2)h(t —2),t > 0.

The graph of (f * g)(t) is given below ®
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(Fg)(t)

Problem 46.5
Compute and graph f x g where f(t) = h(t) —h(t — 1) and g(t) = h(t — 1) —
2h(t — 2).

Solution.
Since f(t) = h(t) — h(t — 1), F(s) =  — <= Similarly, since g(t) = h(t —

1) — 2h(t — 2), G(s) = ©° — 22 Thus,

e —3e725 4 2e7 3

F)6(s) =2
e~ s 6—25 6_38
T2 -3 52 +2 52

It follows that
(fxg)(t)=(t—1h(t—1) = 3(t —2)h(t —2) + 2(t = 3)h(t — 3),t > 0.
The graph of (f * g)(t) is given below ®

1
()t

b | 2\3
-1 \
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Problem 46.6
Compute t * t x t.

Solution.
By the convolution theorem we have L[txtxt] = (L[t])* = (%)3 = . Hence,

txtxt=L1 5] =L =L t>0m

Problem 46.7

Compute h(t) x e~t x 72t

Solution.
By the convolution theorem we have L[h(t)xe txe™ ] = L[h(t)|Lle ! L[e %] =

% : 54+1 . SJ%z Using the partial fractions decomposition we can write
1 1 1 n 1 1
s(s+1)(s+2) 25 s+1 2 s+2°
Hence,
1 1
h(tyxetxe ™ == —el4+ e t>0nm
2 2
Problem 46.8
Compute t * e~! * et
Solution.
By the convolution theorem we have L[t x e~ x e'] = L[t]Lle™|L[e!] = & -
1 1 . . . o). .
77 5-7- Using the partial fractions decomposition we can write
1 1 n 1 1 1 1
s2(s+1)(s—1) 82 2 s—1 2 s+1°
Hence,
. . 6t eft
txelxel=—t+———t>0
e ke + 5 5t 2 [ ]

Problem 46.9

n functions
7\

Suppose it is known that ?L(t) s« h(t) * - h(t} = (C't%. Determine the con-
stants C' and the positive integer n.
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Solution.
n functions

We know that ﬁ[ﬁ(t) s h(t) -« h(t)] = (LIh())" = sin so that E—l[sin} —
"L _ 048 Tt follows that n = 9 and C' = é [ |

(n—1)!

Problem 46.10
Use Laplace transform to solve for y(t) :

/t sin (t — A)y(\)d\ = t2.

Solution.

Note that the given equation reduces to sint x y(t) = t2. Taking Laplace
g q Y g p

transform of both sides we find z;(j:i = Z. This implies Y (s) = @ =

24 5 Hence, y(t) = L'+ 3] =2+8t2>0m

S

Problem 46.11
Use Laplace transform to solve for y(t) :

y(t) — /0 "Ny (A = .

Solution.
Note that the given equation reduces to e’ x y(t) = y(t) — t. Taking Laplace
transform of both sides we find % = Y (s) — %. Solving for Y (s) we find

Y(s) = #712) Using partial fractions decomposition we can write

s_1 1 1 1
STt _Ti_ 3 i
s%(s —2) s +S2+(S—2)
Hence,
1
y(t):_1+ + e t>0m

Problem 46.12
Use Laplace transform to solve for y(t) :

txy(t) =121 —e™).
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Solution.

Taking Laplace transform of both sides we find );(28 ) = S%, -G +21)3 . This implies
Y(s) = % — % Using partial fractions decomposition we can write
52 1 2 1

GH1P s+l (F12  rip

Hence,
£ t?
y(t) =2 -2 —2te + o) =2 (1 —(1—-2t+ —)€t> t=z0m

Problem 46.13
Solve the following initial value problem.

t
y’—yZ/ (t = Nerdr, y(0) = —1.
0

Solution.

Note that 3/ — y = t x e'. Taking Lalplace transform of both sides we find
sY — (=1) =Y = & - . This implies that Y (s) = ——=5 + 52(8+1)2 Using
partial fractions decomposition we can write

12 12
s2(s—1)2 s s s—1 (s—1)2
Thus,
1 2 1 2 1 2 1 3 1
Y(s)= ——— + 24— _Zii ,
(s) s—1+s+32 s—1+(s—1)2 s+32 s—1+(s—1)2
Finally,

y(t) =2+t —3e" +te',t >0m
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Section 47

Problem 47.1
Evaluate

(a) [7(1+e ")d(t — 2)dt.
(b) [1,(1 4+ e H)3(t — 2)dt.

Solution.
(a) [F(1+e ot —2)dt =1+e 2
(b) f_12(1 + e ")o(t — 2)dt = 0 since 2 lies outside the integration interval m

Problem 47.2
Let f(t) be a function defined and continuous on 0 < ¢ < co. Determine

(f 6)(t) = /0 F(t— $)0(s)ds.

Solution.
Let g(s) = f(t — s). Then

(f *8)(t) = / £t — )6(s)ds = / 9(5)5(s)ds

Problem 47.3
Determine a value of the constant to such that fol sin® [w(t — t)]0(t—3)dt = 3.

Solution.
We have

Thus, a possible value is when 7 ((% — to) = %. Solving for ¢y we find ty = % [
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Problem 47.4
If fls t"5(t — 2)dt = 8, what is the exponent n?

Solution.
We have ff’ t"0(t —2)dt =2" =8. Thus,n =3 m

Problem 47.5
Sketch the graph of the function g(¢) which is defined by g(t) = fot Jo 0(u—
duds, 0 <t < oo.

Solution.
Note first that [; 6(u —1)du =1if s > 1 and 0 otherwise. Hence,

0 - 0, ift<1
TVZ [ins—Dds=t—1, ift>1m

g(v)

Problem 47.6
The graph of the function ¢(t) = f(f e™§(t — to)dt, 0 < t < oo is shown.
Determine the constants o and ¢g.

A
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Solution.
Note that

It follows that tp =2 and o = —1m

Problem 47.7

(a) Use the method of integarting factor to solve the initial value problem
y' —y=h(t), y(0)=0.

(b) Use the Laplace transform to solve the initial value problem ¢’ — ¢ =
o(t), ¢(0) =0.

(c) Evaluate the convolution ¢*h(t) and compare the resulting function with
the solution obtained in part(a).

Solution.
(a) Using the method of integrating factor we find, for ¢ > 0,
y' —y =h(t)
(e7'y) =™
ely=—e"t+C
y=—1+C¢
y=—1+¢"
(b) Taking Laplace of both sides we find s® — ® =1 or ®(s) = —1;. Thus,
o(t) ="

(¢ *h)(t) = /t e = h(s)ds = /t e Vds=—1+¢'m
0

0

Problem 47.8
Solve the initial value problem

Y +y=2+0(t—1), y0)=0, 0<t<6.

Graph the solution on the indicated interval.
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Solution.

Taking Laplace of both sides to obtain sY +Y = 2 4 ¢7*. Thus, Y (s) =

2 e 2 2 e
s(s+1) + s+1 s s+1 + s+1° Hence’

2 — 2t t<1
y(t) = {

2+ (=2 t>1m

3-e) g

Problem 47.9
Solve the initial value problem

y'=0(t—1)—46(t—3), y(0)=0, y'(0)=0, 0<t<6.
Graph the solution on the indicated interval.

Solution.

Taking Laplace of both sides to obtain s?Y = e — ¢73%. Thus, Y(s) =

e—S

—3s
- — <. Hence,

y(t) = (t — Dh(t—1) — (t —3)h(t —3) m
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Problem 47.10
Solve the initial value problem

y' =2y =46(t—1), y(0)=1, ¥ (0)=0, 0<t <2
Graph the solution on the indicated interval.

Solution.

Taking Laplace transform of both sides and using the initial conditions we
find
Y —5—2(sY — 1) =

Solving for s we find Y (s) = % + h =1_

V)
[\
V)
v

1 1
y(t) =1—h(t—1)+ e ADh(t—1) m

Problem 47.11
Solve the initial value problem

y'+2y +y=0(t—-2), y(0)=0, y(0)=1, 0<t<6.
Graph the solution on the indicated interval.

Solution.
Taking Laplace transform of both sides to obtam Y —1425Y +Y = e %,
Solving for Y'(s) we find Y (s) = . Therefore, y(t) = te™" + (t —

2)e"2h(t —2) m

erl)2 + (s+1
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