Calculus of Variations solved problems

Pavel Pyrih

June 4, 2012

(public domain)

Acknowledgement. The following problems were solved using my own procedure in a program Maple V, release 5. All possible errors are my faults.

1 Solving the Euler equation

Theorem.(Euler) Suppose f(x, y, y') has continuous partial derivatives of the second order on the interval [a, b]. If a functional $F(y) = \int_a^b f(x, y, y') dx$ attains a weak relative extrema at y_0 , then y_0 is a solution of the following equation

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = 0.$$

It is called the *Euler equation*.

1.1 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 12 x y(x) + \left(\frac{\partial}{\partial x} y(x)\right)^{2} dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 12 x y(x) + (\frac{\partial}{\partial x} y(x))^2$$

in the form

$$f(x, y, z) = 12 x y + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 12 x$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$12x - 2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = x^3 + C1x + C2$$

Info.

 $cubic_polynomial$

Comment.

1.2 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 3x + \sqrt{\frac{\partial}{\partial x} y(x)} dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 3\,x + \sqrt{\frac{\partial}{\partial x}\,\mathrm{y}(x)}$$

in the form

$$f(x, y, z) = 3x + \sqrt{z}$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{1}{2} \frac{1}{\sqrt{\frac{\partial}{\partial x} y}}$$

and

$$\frac{\partial^2}{\partial x \, \partial z} \, \mathbf{f}(x, \, \mathbf{y}(x), \, \frac{\partial}{\partial x} \, \mathbf{y}(x)) = -\frac{1}{4} \, \frac{\frac{\partial^2}{\partial x^2} \, \mathbf{y}(x)}{(\frac{\partial}{\partial x} \, \mathbf{y}(x))^{(3/2)}}$$

and finally obtain the Euler equation for our functional

$$\frac{1}{4} \frac{\frac{\partial^2}{\partial x^2} y(x)}{\left(\frac{\partial}{\partial x} y(x)\right)^{(3/2)}} = 0$$

We solve it using various tools and obtain the solution

$$y(x) = _{-}C1 x + _{-}C2$$

Info.

 $linear_function$

Comment.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} x + y(x)^{2} + 3\left(\frac{\partial}{\partial x}y(x)\right) dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = x + y(x)^2 + 3(\frac{\partial}{\partial x} y(x))$$

in the form

$$f(x, y, z) = x + y^2 + 3z$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 3$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=0$$
 and finally obtain the Euler equation for our functional

$$2y(x) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = 0$$

Info.

 $constant_solution$

Comment.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2$$

in the form

$$f(x, y, z) = y^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=0$$
 and finally obtain the Euler equation for our functional

$$2y(x) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = 0$$

Info.

zero

Comment.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} + x^{2} \left(\frac{\partial}{\partial x} y(x) \right) dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2 + x^2 \left(\frac{\partial}{\partial x} y(x)\right)$$

in the form

$$f(x, y, z) = y^2 + x^2 z$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x^2$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,x$$
 and finally obtain the Euler equation for our functional

$$2y(x) - 2x = 0$$

We solve it using various tools and obtain the solution

$$y(x) = x$$

Info.

linear

Comment.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) + x \left(\frac{\partial}{\partial x} y(x) \right) dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x) + x \left(\frac{\partial}{\partial x} y(x)\right)$$

in the form

$$f(x, y, z) = y + xz$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 1$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=1$$
 and finally obtain the Euler equation for our functional

$$0 = 0$$

We solve it using various tools and obtain the solution

$$y(x) = Y(x)$$

Info.

 $all_functions$

Comment.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \frac{\partial}{\partial x} y(x) dx$$

Hint:

elementary

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{\partial}{\partial x} y(x)$$

in the form

$$f(x, y, z) = z$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 1$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=0$$
 and finally obtain the Euler equation for our functional

$$0 = 0$$

We solve it using various tools and obtain the solution

$$y(x) = Y(x)$$

Info.

 $all_functions$

Comment.

1.8 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} - \left(\frac{\partial}{\partial x}y(x)\right)^{2} dx$$

Hint:

 $missinq_x$

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x}y(x)) = y(x)^2 - (\frac{\partial}{\partial x}y(x))^2$$

in the form

$$f(x, y, z) = y^2 - z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = -2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = -2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2y(x) + 2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = _{-}C1\cos(x) + _{-}C2\sin(x)$$

Info.

 $trig_functions$

Comment.

1.9 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \sqrt{1 + (\frac{\partial}{\partial x} y(x))^{2}} dx$$

Hint:

 $missing_x_y$

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = \sqrt{1 + (\frac{\partial}{\partial x} y(x))^2}$$

in the form

$$f(x, y, z) = \sqrt{1 + z^2}$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{\frac{\partial}{\partial x} y}{\sqrt{1 + (\frac{\partial}{\partial x} y)^2}}$$

and

$$\frac{\partial^2}{\partial x \, \partial z} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) = -\frac{\left(\frac{\partial}{\partial x} \, \mathrm{y}(x)\right)^2 \left(\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x)\right)}{(1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x)\right)^2)^{(3/2)}} + \frac{\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x)}{\sqrt{1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x)\right)^2}}$$

and finally obtain the Euler equation for our functional

$$\frac{\left(\frac{\partial}{\partial x} y(x)\right)^2 \left(\frac{\partial^2}{\partial x^2} y(x)\right)}{\left(1 + \left(\frac{\partial}{\partial x} y(x)\right)^2\right)^{(3/2)}} - \frac{\frac{\partial^2}{\partial x^2} y(x)}{\sqrt{1 + \left(\frac{\partial}{\partial x} y(x)\right)^2}} = 0$$

We solve it using various tools and obtain the solution

$$y(x) = _{-}C1 x + _{-}C2$$

Info.

 $linear_function$

Comment.

1.10 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} x \left(\frac{\partial}{\partial x} y(x) \right) + \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 $missinq_y$

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = x \left(\frac{\partial}{\partial x} y(x) \right) + \left(\frac{\partial}{\partial x} y(x) \right)^2$$

in the form

$$f(x, y, z) = xz + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x + 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 1 + 2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-1 - 2\left(\frac{\partial^2}{\partial x^2} y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = -\frac{1}{4}x^2 + _C1x + _C2$$

Info.

 $quadratic_function$

Comment.

1.11 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} (1+x) \left(\frac{\partial}{\partial x} y(x)\right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = (1+x) \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = (1 + x) z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2(1+x)(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 2\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) + 2\,(1+x)\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-2\left(\frac{\partial}{\partial x}y(x)\right) - 2\left(1+x\right)\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = C1 + C2 \ln(1+x)$$

Info.

 $not_supplied$

Comment.

1.12 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 2y(x) e^{x} + y(x)^{2} + \left(\frac{\partial}{\partial x}y(x)\right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y(x) e^x + y(x)^2 + (\frac{\partial}{\partial x} y(x))^2$$

in the form

$$f(x, y, z) = 2 y e^x + y^2 + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2e^x + 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2e^{x} + 2y(x) - 2\left(\frac{\partial^{2}}{\partial x^{2}}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = (\frac{1}{2}\cosh(x)^{2} + \frac{1}{2}\cosh(x)\sinh(x) + \frac{1}{2}x)\sinh(x) + (-\frac{1}{2}\cosh(x)\sinh(x) + \frac{1}{2}x - \frac{1}{2}\cosh(x)^{2})\cosh(x) + C1\sinh(x) + C2\cosh(x)$$

Info.

 $not_supplied$

Comment.

1.13 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 2y(x) + \left(\frac{\partial}{\partial x}y(x)\right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y(x) + (\frac{\partial}{\partial x} y(x))^2$$

in the form

$$f(x, y, z) = 2y + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2 - 2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = \frac{1}{2}x^2 + C1x + C2$$

Info.

 $not_supplied$

Comment.

1.14 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 2 \left(\frac{\partial}{\partial x} y(x) \right)^{3} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y(x) \right)^3$$

in the form

$$f(x, y, z) = 2z^3$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 6 \left(\frac{\partial}{\partial x} y \right)^2$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 12\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-12\left(\frac{\partial}{\partial x}\,{\bf y}(x)\right)\left(\frac{\partial^2}{\partial x^2}\,{\bf y}(x)\right)=0$$
 We solve it using various tools and obtain the solution

$$y(x) = C1$$

Info.

 $not_supplied$

Comment.

1.15 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 4x \left(\frac{\partial}{\partial x} y(x) \right) + \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 4x \left(\frac{\partial}{\partial x} y(x)\right) + \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = 4xz + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 4x + 2(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 4 + 2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-4 - 2\left(\frac{\partial^2}{\partial x^2} y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = -x^2 + C1x + C2$$

Info.

 $not_supplied$

Comment.

1.16 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 7 \left(\frac{\partial}{\partial x} y(x) \right)^{3} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 7 \left(\frac{\partial}{\partial x} y(x) \right)^3$$

in the form

$$f(x, y, z) = 7z^3$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 21 \left(\frac{\partial}{\partial x} y \right)^2$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 42\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-42\left(\frac{\partial}{\partial x}\,{\bf y}(x)\right)\left(\frac{\partial^2}{\partial x^2}\,{\bf y}(x)\right)=0$$
 We solve it using various tools and obtain the solution

$$y(x) = C1$$

Info.

 $not_supplied$

Comment.

1.17 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \sqrt{\mathbf{y}(x) \left(1 + \left(\frac{\partial}{\partial x} \mathbf{y}(x)\right)^{2}\right)} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = \sqrt{y(x) (1 + (\frac{\partial}{\partial x} y(x))^2)}$$

in the form

$$f(x, y, z) = \sqrt{y(1+z^2)}$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) = \frac{1}{2} \, \frac{1 + (\frac{\partial}{\partial x} \, y)^2}{\sqrt{y \, (1 + (\frac{\partial}{\partial x} \, y)^2)}}$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{y(\frac{\partial}{\partial x} y)}{\sqrt{y(1 + (\frac{\partial}{\partial x} y)^2)}}$$

and

$$\begin{split} \frac{\partial^2}{\partial x \, \partial z} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) &= \\ &- \frac{1}{2} \, \frac{\mathrm{y}(x) \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right) \left(\left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right) \left(1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right)^2 \right) + 2 \, \mathrm{y}(x) \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right) \left(\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x) \right) \right)}{\left(\mathrm{y}(x) \left(1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right)^2 \right) \right)^{(3/2)}} \\ &+ \frac{\left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right)^2}{\sqrt{\mathrm{y}(x) \left(1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right)^2 \right)}} + \frac{\mathrm{y}(x) \left(\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x) \right)}{\sqrt{\mathrm{y}(x) \left(1 + \left(\frac{\partial}{\partial x} \, \mathrm{y}(x) \right)^2 \right)}} \end{split}$$

and finally obtain the Euler equation for our functional

$$\frac{1}{2} \frac{1}{\sqrt{y(x)}} + \frac{1}{2} \frac{y(x) \left(\frac{\partial}{\partial x} y(x)\right) \left(\left(\frac{\partial}{\partial x} y(x)\right) \left(1 + \left(\frac{\partial}{\partial x} y(x)\right)^{2}\right) + 2y(x) \left(\frac{\partial}{\partial x} y(x)\right) \left(\frac{\partial^{2}}{\partial x^{2}} y(x)\right)\right)}{\left(y(x) \left(1 + \left(\frac{\partial}{\partial x} y(x)\right)^{2}\right)\right)^{(3/2)}} - \frac{\left(\frac{\partial}{\partial x} y(x)\right)^{2}}{\sqrt{y(x) \left(1 + \left(\frac{\partial}{\partial x} y(x)\right)^{2}\right)}} - \frac{y(x) \left(\frac{\partial^{2}}{\partial x^{2}} y(x)\right)}{\sqrt{y(x) \left(1 + \left(\frac{\partial}{\partial x} y(x)\right)^{2}\right)}} = 0$$

We solve it using various tools and obtain the solution

$$y(x) = \frac{1}{4} \frac{4 + C1^2 x^2 + 2 C1^2 x C2 + C2^2 C1^2}{C1}$$

Info.

 $quadratic_function$

Comment.

1.18 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} x \, y(x) \left(\frac{\partial}{\partial x} \, y(x) \right) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = x\,\mathrm{y}(x)\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))$$

in the form

$$f(x, y, z) = xyz$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x y$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=\mathrm{y}(x)+x\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-y(x) - x\left(\frac{\partial}{\partial x}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = 0$$

Info.

 $not_supplied$

Comment.

1.19 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} x y(x) + 2 \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = x y(x) + 2 \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = xy + 2z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = x$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 4 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=4\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$x - 4\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = \frac{1}{24} x^3 + _C1 x + _C2$$

Info.

 $not_supplied$

Comment.

1.20 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} x y(x) + y(x)^{2} - 2y(x)^{2} \left(\frac{\partial}{\partial x} y(x)\right) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = x y(x) + y(x)^2 - 2 y(x)^2 (\frac{\partial}{\partial x} y(x))$$

in the form

$$f(x, y, z) = xy + y^2 - 2y^2z$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = x + 2\,y - 4\,y\,(\frac{\partial}{\partial x}\,y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = -2 y^2$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = -4\,\mathrm{y}(x)\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$x + 2y(x) + 4y(x) \left(\frac{\partial}{\partial x}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = -\frac{1}{2}x$$

Info.

 $no_extremal$

Comment.

1.21 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) \sqrt{1 + (\frac{\partial}{\partial x} y(x))^{2}} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x) \sqrt{1 + (\frac{\partial}{\partial x} y(x))^2}$$

in the form

$$f(x, y, z) = y\sqrt{1+z^2}$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \sqrt{1 + (\frac{\partial}{\partial x} y)^2}$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{y(\frac{\partial}{\partial x} y)}{\sqrt{1 + (\frac{\partial}{\partial x} y)^2}}$$

and

$$\begin{split} \frac{\partial^2}{\partial x \, \partial z} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) &= \\ \frac{\left(\frac{\partial}{\partial x} \, \mathrm{y}(x)\right)^2}{\sqrt{1 + (\frac{\partial}{\partial x} \, \mathrm{y}(x))^2}} &- \frac{\mathrm{y}(x) \, (\frac{\partial}{\partial x} \, \mathrm{y}(x))^2 \, (\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x))}{(1 + (\frac{\partial}{\partial x} \, \mathrm{y}(x))^2)^{(3/2)}} + \frac{\mathrm{y}(x) \, (\frac{\partial^2}{\partial x^2} \, \mathrm{y}(x))}{\sqrt{1 + (\frac{\partial}{\partial x} \, \mathrm{y}(x))^2}} \end{split}$$

and finally obtain the Euler equation for our functional

$$1 - \frac{\left(\frac{\partial}{\partial x} y(x)\right)^2}{\sqrt{1 + \left(\frac{\partial}{\partial x} y(x)\right)^2}} + \frac{y(x) \left(\frac{\partial}{\partial x} y(x)\right)^2 \left(\frac{\partial^2}{\partial x^2} y(x)\right)}{(1 + \left(\frac{\partial}{\partial x} y(x)\right)^2\right)^{(3/2)}} - \frac{y(x) \left(\frac{\partial^2}{\partial x^2} y(x)\right)}{\sqrt{1 + \left(\frac{\partial}{\partial x} y(x)\right)^2}} = 0$$

We solve it using various tools and obtain the solution

$$\mathbf{y}(x) = \frac{1}{2} \, \frac{1 + \left(e^{(\sqrt{-CI} \, (x + _C2))}\right)^2}{e^{(\sqrt{-CI} \, (x + _C2))} \, \sqrt{_CI}}$$

Info.

 $not_supplied$

Comment.

1.22 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) \left(\frac{\partial}{\partial x} y(x) \right) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x) (\frac{\partial}{\partial x} y(x))$$

in the form

$$f(x, y, z) = yz$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{\partial}{\partial x} y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = y$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=\frac{\partial}{\partial x}\,\mathrm{y}(x)$$
 and finally obtain the Euler equation for our functional

$$-(\frac{\partial}{\partial x}y(x)) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = Y(x)$$

Info.

 $not_supplied$

Comment.

1.23 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x) \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = yz^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = (\frac{\partial}{\partial x} y)^2$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 y (\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))^2+2\,\mathrm{y}(x)\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-2\left(\frac{\partial}{\partial x}y(x)\right)^{2} - 2y(x)\left(\frac{\partial^{2}}{\partial x^{2}}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = 0$$

Info.

 $not_supplied$

Comment.

1.24 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} + 2 x y(x) \left(\frac{\partial}{\partial x} y(x) \right) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2 + 2 x y(x) (\frac{\partial}{\partial x} y(x))$$

in the form

$$f(x, y, z) = y^2 + 2xyz$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) = 2 \, y + 2 \, x \, (\frac{\partial}{\partial x} \, y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 x y$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 2\,\mathrm{y}(x) + 2\,x\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-2x\left(\frac{\partial}{\partial x}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = Y(x)$$

Info.

 $all_functions$

Comment.

1.25Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} + 4y(x) \left(\frac{\partial}{\partial x} y(x) \right) + 4 \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2 + 4y(x) \left(\frac{\partial}{\partial x} y(x)\right) + 4\left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = y^2 + 4yz + 4z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y + 4(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 4y + 8(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 4\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) + 8\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2y(x) - 4\left(\frac{\partial}{\partial x}y(x)\right) - 8\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = C1 \cosh(\frac{1}{2}x) + C2 \sinh(\frac{1}{2}x)$$

Info.

 $two_exponentials$

Comment.

1.26 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} + y(x) \left(\frac{\partial}{\partial x} y(x) \right) + \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2 + y(x) \left(\frac{\partial}{\partial x} y(x)\right) + \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = y^2 + yz + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y + (\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = y + 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=(\frac{\partial}{\partial x}\,\mathrm{y}(x))+2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2 y(x) - (\frac{\partial}{\partial x} y(x)) - 2 (\frac{\partial^2}{\partial x^2} y(x)) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = _C1 \sinh(x) + _C2 \cosh(x)$$

Info.

 $not_supplied$

Comment.

1.27 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} 2y(x) e^{x} + y(x)^{2} + \left(\frac{\partial}{\partial x}y(x)\right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y(x) e^x + y(x)^2 + (\frac{\partial}{\partial x} y(x))^2$$

in the form

$$f(x, y, z) = 2 y e^x + y^2 + z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2e^x + 2y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2e^{x} + 2y(x) - 2\left(\frac{\partial^{2}}{\partial x^{2}}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$\begin{aligned} \mathbf{y}(x) &= (\frac{1}{2}\cosh(x)^2 + \frac{1}{2}\cosh(x)\sinh(x) + \frac{1}{2}x)\sinh(x) \\ &+ (-\frac{1}{2}\cosh(x)\sinh(x) + \frac{1}{2}x - \frac{1}{2}\cosh(x)^2)\cosh(x) + _{-}C1\sinh(x) + _{-}C2\cosh(x) \end{aligned}$$

Info.

 $not_supplied$

Comment.

1.28 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} + \left(\frac{\partial}{\partial x} y(x)\right)^{2} - 2y(x)\sin(x) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x}y(x)) = y(x)^2 + (\frac{\partial}{\partial x}y(x))^2 - 2y(x)\sin(x)$$

in the form

$$f(x, y, z) = y^2 + z^2 - 2y\sin(x)$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y - 2\sin(x)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2y(x) - 2\sin(x) - 2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = \left(\frac{1}{4}e^{x}\cos(x) - \frac{1}{4}\sin(x)e^{x} + \frac{1}{4}e^{(-x)}\cos(x) + \frac{1}{4}e^{(-x)}\sin(x)\right)\sinh(x)$$

$$+ \left(-\frac{1}{4}e^{x}\cos(x) + \frac{1}{4}\sin(x)e^{x} + \frac{1}{4}e^{(-x)}\cos(x) + \frac{1}{4}e^{(-x)}\sin(x)\right)\cosh(x)$$

$$+ C1\sinh(x) + C2\cosh(x)$$

Info.

 $exponentials_and_sin$

Comment.

1.29 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x)^{2} - 4y(x) \left(\frac{\partial}{\partial x} y(x) \right) + 4 \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x)^2 - 4y(x) \left(\frac{\partial}{\partial x} y(x)\right) + 4 \left(\frac{\partial}{\partial x} y(x)\right)^2$$

in the form

$$f(x, y, z) = y^2 - 4yz + 4z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2y - 4(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = -4y + 8(\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = -4\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) + 8\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$2y(x) + 4\left(\frac{\partial}{\partial x}y(x)\right) - 8\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = C1 \cosh(\frac{1}{2}x) + C2 \sinh(\frac{1}{2}x)$$

Info.

 $not_supplied$

Comment.

1.30 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) + y(x) \left(\frac{\partial}{\partial x} y(x) \right) + \left(\frac{\partial}{\partial x} y(x) \right) + \frac{1}{2} \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = \mathrm{y}(x) + \mathrm{y}(x)\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) + (\frac{\partial}{\partial x}\,\mathrm{y}(x)) + \frac{1}{2}\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))^2$$
 in the form

$$f(x, y, z) = y + yz + z + \frac{1}{2}z^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 1 + (\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial}{\partial z} \, \mathrm{f}(x, \, \mathrm{y}(x), \, \frac{\partial}{\partial x} \, \mathrm{y}(x)) = y + 1 + (\frac{\partial}{\partial x} \, y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=(\frac{\partial}{\partial x}\,\mathrm{y}(x))+(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$1 - \left(\frac{\partial}{\partial x} y(x)\right) - \left(\frac{\partial^2}{\partial x^2} y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = \frac{1}{2}x^2 + C1x + C2$$

Info.

 $quadratic_function$

Comment.

1.31 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} y(x) - y(x) \left(\frac{\partial}{\partial x} y(x) \right) + x \left(\frac{\partial}{\partial x} y(x) \right)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = y(x) - y(x) \left(\frac{\partial}{\partial x} y(x)\right) + x \left(\frac{\partial}{\partial x} y(x)\right)^{2}$$

in the form

$$f(x, y, z) = y - yz + xz^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 1 - (\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = -y + 2x \left(\frac{\partial}{\partial x} y\right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathbf{f}(x,\,\mathbf{y}(x),\,\frac{\partial}{\partial x}\,\mathbf{y}(x)) = (\frac{\partial}{\partial x}\,\mathbf{y}(x)) + 2\,x\,(\frac{\partial^2}{\partial x^2}\,\mathbf{y}(x))$$
 and finally obtain the Euler equation for our functional

$$1-(\frac{\partial}{\partial x}\,{\bf y}(x))-2\,x\,(\frac{\partial^2}{\partial x^2}\,{\bf y}(x))=0$$
 We solve it using various tools and obtain the solution

$$y(x) = \frac{1}{2}x + C1 + C2 \ln(x)$$

Info.

 $not_supplied$

Comment.

1.32 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \left(\frac{\partial}{\partial x} y(x)\right) \left(1 + x^{2} \left(\frac{\partial}{\partial x} y(x)\right)\right) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$\mathbf{f}(x,\,\mathbf{y}(x),\,\frac{\partial}{\partial x}\,\mathbf{y}(x)) = (\frac{\partial}{\partial x}\,\mathbf{y}(x))\,(1+x^2\,(\frac{\partial}{\partial x}\,\mathbf{y}(x)))$$

in the form

$$f(x, y, z) = z (1 + x^2 z)$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 1 + 2 x^2 (\frac{\partial}{\partial x} y)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 4\,x\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) + 2\,x^2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-4x\left(\frac{\partial}{\partial x}y(x)\right) - 2x^2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = -C1 + \frac{-C2}{x}$$

Info.

 $hyperbolic_function$

Comment.

1.33 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \frac{\left(\frac{\partial}{\partial x} y(x)\right)^{2}}{x^{3}} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x} y(x)) = \frac{(\frac{\partial}{\partial x} y(x))^2}{x^3}$$

in the form

$$f(x, y, z) = \frac{z^2}{x^3}$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 0$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \frac{\frac{\partial}{\partial x} y}{x^3}$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 2\,\frac{\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x)}{x^3} - 6\,\frac{\frac{\partial}{\partial x}\,\mathrm{y}(x)}{x^4}$$
 and finally obtain the Euler equation for our functional

$$-2\,\frac{\frac{\partial^2}{\partial x^2}\,\mathbf{y}(x)}{x^3}+6\,\frac{\frac{\partial}{\partial x}\,\mathbf{y}(x)}{x^4}=0$$
 We solve it using various tools and obtain the solution

$$y(x) = _C1 + _C2 x^4$$

Info.

 $not_supplied$

Comment.

1.34 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \left(\frac{\partial}{\partial x} y(x)\right)^{2} + 2y(x) \left(\frac{\partial}{\partial x} y(x)\right) - 16y(x)^{2} dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = (\frac{\partial}{\partial x}\,\mathrm{y}(x))^2 + 2\,\mathrm{y}(x)\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) - 16\,\mathrm{y}(x)^2$$

in the form

$$f(x, y, z) = z^2 + 2yz - 16y^2$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 2\,(\frac{\partial}{\partial x}\,y) - 32\,y$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right) + 2 y$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x)) + 2\,(\frac{\partial}{\partial x}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-32\,\mathrm{y}(x) - 2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x)) - 2\,(\frac{\partial}{\partial x}\,\mathrm{y}(x)) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = _{-}C1\cos(4x) + _{-}C2\sin(4x)$$

Info.

 $trig_functions$

Comment.

1.35 Problem.

Using the Euler equation find the extremals for the following functional

$$\int_{a}^{b} \left(\frac{\partial}{\partial x} y(x)\right)^{2} + \cos(y(x)) dx$$

Hint:

 no_hint

Solution.

We denote auxiliary function f

$$f(x, y(x), \frac{\partial}{\partial x}y(x)) = (\frac{\partial}{\partial x}y(x))^2 + \cos(y(x))$$

in the form

$$f(x, y, z) = z^2 + \cos(y)$$

Substituting we x, y(x) and y'(x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives

$$\frac{\partial}{\partial y} f(x, y(x), \frac{\partial}{\partial x} y(x)) = -\sin(y)$$

and

$$\frac{\partial}{\partial z} f(x, y(x), \frac{\partial}{\partial x} y(x)) = 2 \left(\frac{\partial}{\partial x} y \right)$$

and

$$\frac{\partial^2}{\partial x\,\partial z}\,\mathrm{f}(x,\,\mathrm{y}(x),\,\frac{\partial}{\partial x}\,\mathrm{y}(x))=2\,(\frac{\partial^2}{\partial x^2}\,\mathrm{y}(x))$$
 and finally obtain the Euler equation for our functional

$$-\sin(y(x)) - 2\left(\frac{\partial^2}{\partial x^2}y(x)\right) = 0$$

We solve it using various tools and obtain the solution

$$y(x) = 0$$

Info.

 $not_supplied$

Comment.