CALCULUS OF VARIATIONS

PROF. ARNOLD ARTHURS

1. INTRODUCTION

EXAMPLE 1.1 (Shortest Path Problem). Let A and B be two fixed points in a space. Then
we want to find the shortest distance between these two points. We can construct the
problem diagrammatically as below.

Y =Y (x)
k B
ds
dy
A dx
a b v

FIGURE 1. A simple curve.

From basic geometry (i.e. Pythagoras’ Theorem) we know that

ds® = da* 4+ dY?
(1.1) = {1+ (Y")*}da”.
The second line of this is achieved by noting Y’ = %. Now to find the path between the

points A and B we integrate ds between A and B, i.e. ff ds. We however replace ds using
equation (1.1) above and hence get the expression of the length of our curve

J(Y) = /b VIF ) de.

To find the shortest path, i.e. to minimise J, we need to find the extremal function.

EXAMPLE 1.2 (Minimal Surface of Revolution - Euler). This problem is very similar to the
above but instead of trying to find the shortest distance, we are trying to find the smallest

surface to cover an area. We again display the problem diagrammatically.
1
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Y =Y (z) 5
ds x
Y

FIGURE 2. A volume of revolution, of the curve Y'(z), around the line y = 0.

To find the surface of our shape we need to integrate 2rY ds between the points A and B,
ie. ff 27Y'ds. Substituting ds as above with equation (1.1) we obtain our expression of
the size of the surface area

J(Y)= /b 21Y /1 + (Y7)? da.

To find the minimal surface we need to find the extremal function.

ExAMPLE 1.3 (Brachistochrone). This problem is derived from Physics. If I release a bead
from O and let it slip down a frictionless curve to point B, accelerated only by gravity,
what shape of curve will allow the bead to complete the journey in the shortest possible
time. We can construct this diagrammatically below.

@)

ig . Y = Y(x)

)

FIGURE 3. A bead slipping down a frictionless curve from point O to B.

In the above problem, we want to minimise the variable of time. So, we construct our
integral accordingly and consider the total time taken T as a function of the curve Y.
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b
T(Y) = / dt
z=0
__ds

now using v = £ and rearranging we achieve

dt
/b ds
=0 v

Finally using the formula v? = 2¢gY we obtain

b1+ (Y1)

Thus to find the smallest possible time taken we need to find the extremal function.

EXAMPLE 1.4 (Isoperimetric problems). These are problems with constraints. A simple
example of this is trying to find the shape that maximises the area enclosed by a rectangle
of fixed perimeter p.

X

FIGURE 4. A rectangle with sides of length x and y.

We can see clearly that the constraint equations are

(1.2) A=uxy
(1.3) p =2z + 2y.

By rearranging equation (1.3) in terms of y and substituting into (1.2) we obtain that

we require that % = 0 and thus
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and finally substituting back into equation (1.3) gives us

_1 1 p
Y=o \P7P) =

Thus a square is the shape that maximises the area.

ExAMPLE 1.5 (Chord and Arc Problem). Here we are seeking the curve of a given length
that encloses the largest area above the z-axis. So, we seek the curve Y =y (y is reserved
for the solution and Y is used for the general case). We describe this diagrammatically
below.

AREA

FIGURE 5. A curve Y (z) above the z-axis.
We have the area of the curve J(Y') to be

J(Y):/ObY dz

where J(Y') is maximised subject to the length of the curve

K(Y) = /Ob\/1 TR dr =,

where ¢ is a given constant.

2. THE SIMPLEST / FUNDAMENTAL PROBLEM

Examples 1.1, 1.2 and 1.3 are all special cases of the simplest/fundamental problem.
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Yp —

Ya —
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S —m —m — — — —
8

FIGURE 6. The Simplest/Fundamental Problem.

Suppose A(a,y,) and B(b,y,) are two fixed points and consider a set of curves

(2.1) Y =Y ()

joining A and B. Then we seek a member Y = y(x) of this set which minimises the integral

(2.2) J(Y) = /bF(:.E,Y,Y’) dz

where Y'(a) = ya, Y (b) = y». We note that examples 1.1 to 1.3 correspond to a specification
of the above general case with the integrand

F=y1+@
F =271+ (Y2

12
7o 1+(Y)‘
2gY

b
1 1
JY) = / {ip(x)(Y')2 + §q(:L')Y2 + f(x)Y} dz.
Now, the curves Y in (2.2) may be continuous, differentiable or neither and this affects the
problem for J(Y'). We shall suppose that the functions Y = Y'(z) are continuous and have
continuous derivatives a suitable number of times. Thus the functions (2.1) belong to a
set {2 of admissible functions. We define () precisely as

An extra example is
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dky
(2.3) Q= {Y ‘ Y continuous and o continuous, k =1,2,..., n} .
T

So the problem is to minimise J(Y) in (2.2) over the functions Y in §2 where

Y(a) =y, and Y (b)=y,.
This basic problem can be extended to much more complicated problems.

ExaMPLE 2.1. We can extend the problem by considering more derivatives of Y. So the
integrand becomes

F=FY, YY",
i.e. I’ depends on Y as well as z,Y,Y".

ExXAMPLE 2.2. We can consider more than one function of z. Then the integrand becomes

F = Fx,Y,Ya, Y], Yy),
so F' depends on two (or more) functions Y of z.
ExaMPLE 2.3. Finally we can consider functions of more than one independent variable.
So, the integrand would become

F=F(z,y, @ 0, 2,),

where subscripts denote partial derivatives. So, F' depends on functions ®(z,y) of two
independent variables z,y. This would mean that to calculate J(Y) we would have to
integrate more than once, for example

J(Y) = //F dzdy.

Note. The integral J(Y) is a numerical-valued function of Y, which is an example of a
functional.

Definition: Let R be the real numbers and € a set of functions. Then the function
J : Q) — Ris called a functional.

Then we can say that the calculus of variations is concerned with mazima and minima
(extremum) of functionals.
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3. MAXIMA AND MINIMA

3.1. The First Necessary Condition

(i)

(3.1)

(3.2)

(3.3)

(3.4)

We use ideas from elementary calculus of functions f(u).

\\\\\\+,////ﬁ§

~
IS

FIGURE 7. Plot of a function f(u) with a minimum at u = a.

If f(u) > f(a) for all u near a on both sides of u = a this means that there is a
minimum at u = a. The consequences of this are often seen in an expansion. Let
us assume that there is a minimum at f(a) and a Taylor expansion exists about
u = a such that

flat+h) = fl@) + b (@) + o f'(@) £ 0, (h£0)

Note that we define df(a, h) := hf'(a) to be the first differential. As there exists a
minimum at v = a we must have

fla+h) = f(a) for he(=0,0)

by the above comment. Now, if f'(a) # 0, say it is positive and h is sufficiently
small, then

sign{Af = fla+h) — f(a)} =sign{df = hf'(a)} (#0).
In equation (3.3) the L.H.S. > 0 because f has a minimum at a and hence equation
(3.2) holds and also the R.H.S. > 0 if h > 0. However this is a contradiction, hence
df =0 which = f'(a) = 0.
For functions f(u,v) of two variables; similar ideas hold. Thus if (a, b) is a minimum

then f(u,v) > f(a,b) for all u near @ and v near b. Then for some intervals (—dy, 1)
and (—ds, 02) we have that

+ 01

a—0 <u<a
<b+ 6y

b—52 <’U
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gives a minimum / maximum at (a,b) < f(a,b). The corresponding Taylor expan-
sion is

(3.5) fla+h,b+ k)= f(a,b) + hf,(a,b) + kf,(a,b) + Os.

We note that in this case the first derivative is df(a, b, h, k) := hf,(a,b) +kf,(a,b).
For a minimum (or a maximum) at (a,b) it follows, as in the previous case that a
necessary condition is

(3.6) dszég:gzoat(a,b).
Ju  Ov
(iii) Now considering functions of multiple (say n) variables, i.e. f = f(uy, ug,...,u,) =
f(u) we have the Taylor expansion to be
(3.7) f(a+h)= f(a)+h-Vf(a)+ O,.

Thus the statement from the previous case (3.6) becomes
(3.8) df =0=Vf(a) =0.

3.2. Calculus of Variations

Now we consider the integral

(3.9) J(V) = / " Pley.Y') dr.

Suppose J(Y') has a minimum for the curve Y = y. Then

(3.10) J(Y) = J(y)

for Y e Q={Y |Y € Cy, Y(a) = y,, Y(b) = y»}. To obtain information from (3.10) we
expand J(Y') about the curve Y = y by taking the so-called varied curves

(3.11) Y =y+¢e€

like u = a+ h in (3.2). We can represent the consequences of this expansion diagrammat-
ically.
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Y =y(x) + ()
Up — B
Y = y(x)
Yo - A
o b

FIGURE 8. Plot of y(x) and the expansion y(z) + ££(z).

Since all curves Y, including y, go through A and B, it follows that

(3.12) £(a) =0 and &(b) =0.
Now substituting equation (3.11) into (3.10) gives us

(3.13) JY) = Jy+e§) = J(y)
for all y + €€ € Q and substituting (3.11) into (3.9) gives us

b
(3.14) J(y + €§) :/ F(z,y+e€,y +¢ef') da.

Now to deal with this expansion we take a fized z in (a, b) and treat y and y’ as independent
variables. Recall Y and Y’ are independent and the Taylor expansion of two variables
(equation (3.5)) from above. Then we have

(3.15) flu+h,v+k) :f(u,v)%—h%%—k%%—Og.

Now we take u =y, h=e&, v =19, k =¢&, f = F. Then (3.14) implies

b
a0y = dy+0) = [ {F<x,y,y'> +et 2 e 0<52>} da

oy’
= J(y)+6J + Oa.

We note that dJ is calculus of variations notation for dJ where we have
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( OF OF
(316) 5J—8/a {ﬁa—y—i—&a—y,} dx

= linear terms in € = first variation of J

and we also have that

/
(3.17) or _ {—aF(x’Y’Y )} .
dy Y Yy Yimy

Now 4./ is analogous to the linear terms in (3.1), (3.5), (3.7). We now prove that if J(Y")
has a minimum at Y = y, then

(3.18) 0J =0
the first necessary condition for a minimum.

Proof. Suppose 0J # 0 then J(Y) — J(y) = §J + O,. For small enough £ then
sign{J(Y) — J(y)} = sign{dJ}.

We have that 6J > 0 or 6J < 0 for some varied curves corresponding to ¢£. However there
is a minimum of J at Y =y = L.H.S. > 0. This is a contradiction. U

For our J, we have by (3.17)

b/ OF  OF
(3.19) 6J—5/a (ga—y+ a_y/) dz.

If we integrate 2nd term by parts we obtain
b b

oF d OF OF

50 Y DY (LT A

and so we have

b
(3.21) 6J:5/ g{a—F—ig—F;} dz

Note. For notational purposes we write

(3.22) (f. ) = / f(2)g(z) da

which is an inner (or scalar) product. Also, for our J, write
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(3.23) J(y) = — - —=—

as the derivative of J. Then we can express 9. as

(3.24) 6J = (e&,J'(y)).

This gives us the Taylor expansion

(3.25) J(y+¢e&) = J(y) + (€, J'(y)) +0..
57

We compare this with the previous cases of Taylor expansion (3.1), (3.5) and (3.7). Now
collecting our results together we get

Theorem 3.1. A necessary condition for J(Y') to have an extremum (mazimum or mini-
mum) at'Y =y is

(3.26) 6J = (&, J'(y)) =0

for all admassible &. i.e.

“J(Y) has an extremum atY =y” = “0J(y,e£) = 0.

Definition: y is a critical curve (or an extremal), i.e. y is a solution of §J = 0. J(y) is a
stationary value of J and (3.26) is a stationary condition.

To establish an extremum, we need to examine the sign of

AJ = J(y+¢e€) — J(y) = total variation of J.
We consider this later in part two of this course.

4. STATIONARY CONDITION (6J = 0)

Our next step is to see what can be deduced from the condition

(4.1) 0J = 0.
In detail this is

(4.2) (e&,J'(y)) = / e&J' (y) do = 0.

For our case J'(Y) = f; F(z,Y,Y’) dz, we have
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(4.3) J(y) =+ —-——.

To deal with equations (4.2) and (4.3) we use the Euler-Legrange Lemma. Using this
Lemma we can state

Theorem 4.1. A necessary condition for

(4.4) J(Y) = /b F(z,Y,Y") dz,

with Y (a) = y, and Y (b) = yp, to have an extremum at'Y =y is that y is a solution of

(15) ) =5 = o =0

with a < x <b and F = F(z,y,y'). This is known as the Euler-Lagrange equation.

The above theorem is the Fuler-Lagrange variational principle and it is a stationary prin-
ciple.

EXAMPLE 4.1 (Shortest Path Problem). We now revisit Example 1.1 with the mechanisms
that we have just set up. So we had that F(z,Y,Y’) = /1 + (Y’)? previously but instead

we write F\(z,y,y") = /1 + (v')?. Now

or or 2y’ B Y

W 2 /1+ W) I+

The Euler-Lagrange equation for this example is

O—i S =0 a<zxr<b
dz \ V1+(y)?

/

ﬁL:const.
1+ (y')?
=y =«
=y=azr+f

where «, § are arbitrary constants. So, y = ax + ( defines the critical curves. We require
more information to establish a minimum.

EXAMPLE 4.2 (Minimum Surface Problem). Now revisiting Example 1.2, we had F((z,YY’) =
21Y\/1+ (Y’)? but again we write F(z,y,y’) = 2ry+/1 + (v')%. We drop the 27 to give

us
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TVIEE gh=—
oy ’ oy’ 1+ <y/)2'

So, we are left with the Euler-Lagrange equation

e S
1+<y) dl’( 1+(y/)2> N

Now solving the differential equation leaves us with

3
L+ {1+ ) —w'} =0,
for finite ¢’ in (a,b). We therefore have

(4.6) 1+ (y)* =y

Start by rewriting ¢” in terms of y and y’. Then substituting gives us

v 4y
Yo 4
_dy' dy
=3 s
_ Ay 1d(y)?
—Y dy 2 dy
So, substituting (4.7) into (4.6), the Euler-Lagrange equation implies that

(4.7)

, 1 d N2
1"‘(?/)2:59 (gy)
dy 1 d(y)* 1 dz

y 21+ (@W)? 21+z
1
:>lny:§ln(1—|—(y/)2)—l—0

=y =0Vt WP

which is a first integral. Now integrating again gives us

y = cosh <

where C and C' are arbitrary constants. We note that this is a catenary curve.

ZL’—I—Cl)
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5. SPECIAL CASES OF THE EULER-LAGRANGE EQUATION
FOR THE SIMPLEST PROBLEM

For F(z,y,y") the Euler-Lagrange equation is a 2nd order differential equation in general.
There are special cases worth noting.

(1) %_I; =0= F = F(x,y’) and hence y is missing. The Euler-Lagrange equation is

on orbits (extremals or critical curves), first integral. If this can be for ' thus

y/ = f((IJ,C)
then y(z) = [ f(z,¢) dz + .

EXAMPLE 5.1. F = 2% + 22(y)?. Hence 2€ = 0. So Euler-Lagrange equation has

Oy
a first integral 2—5 =c= 2% =c=>y =35 =y = —£ + ¢, which is the
solution.
oF

(2) 5, =0andso F' = F(y,y') and hence x is missing. For any differentiable F'(x,y,y’)
we have by the chain rule

dF OF OF OF ,
& or oy oy
_OF d OF\ , OF ,
—W(m—y/) oy

—8_F+i ’8_F
C Or  dx yay’

on orbits. Now, we have

dx yay’ - Oz

on orbits. When Z_l; = 0, this gives



CALCULUS OF VARIATIONS 15

F
% <F — y’?—y/) = 0 on orbits

=|F—-yF,=c

on orbits. First integral.
Note. G := F —y'F, is the Jacobi function and G = G(z,y,v’).

EXAMPLE 5.2. F' = 27y/1 + (y')2. An example of case 2. So we have

2 /
P, 2
V31+ ()
then the first integral is
F = y/Fy/

=2 (VT P - )
21y
V1t (y)?

= const. = 27c

=y =c\/1+ (v)? - First Integral.

This arose in Example 4.2 as a result of integrating the Euler Lagrange equation

once.

g—; =0 and hence F' = F(z,y), i.e. ¥ is missing. The Euler-Lagrange equation is

oy dzx oy 8—y B

but this isn’t a differential equation in y.

OF dor _9F _

EXAMPLE 5.3. F(z,y,y) = —ylny + xy and then the Euler-Lagrange equation
gives

T =0=-lny—142=0

ny=-1+z=y=c "
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6. CHANGE OF VARIABLES

In the shortest path problem above, we note that J(Y) does not depend on the co-ordinate
system chosen. Suppose we require the extremal for

(6.1) Iy = [ VR e

)

where r = r(f) and ' = %. The Euler-Lagrange equation is

8F d 8F T d r/
2 — — as = | —YV——=] =0
(6.2) or “agor 07 r2+ ()2 do ( T2+ (7"’)2) "
To simplify this we can

(a) change variables in (6.2), or
(b) change variables in (6.1).

For example, in (6.1) take

z =rcosf dz =drcosf — rsinf do

y = rsinf dy = drsinf + rcos 6 db.

So, we obtain

da? + dy? = dr? 4 r*d6?

(1+ (y)?)da? = {(%) + r2} de?
V14 (y)2dz = /12 + (1")2d8.

This is just the smallest path problem, hidden in polar coordinates. We know the solution
to this is

J(r) — J(y) = / VIT @) d.

Now the Euler-Lagrange equation is 4 = 0 = y = ax + 3. Now,

rsinf = arcosf + (3

&

sinf — acosf

r =
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7. SEVERAL INDEPENDENT FUNCTIONS OF ONE VARIABLE

Consider a general solution of the simplest problem.

b
(7.1) J(Yl,YQ,...,Yn):/ F(z,Yi,...,Y,, Y{,...,Y]) da.

Here each curve Y goes through given end points

(7.2) Yi(a) = Yka, Yi(b) = yip fork=1,... n.
Find the critical curves yi, k = 1,...,n. Take

where &.(a) = 0 = & (b). By taking a Taylor expansion around the point (z,y1, ..., Yn, Y], - - -

we find that the first variation of J is

(7.4) 0T = (& I .- yn))-
k=1
with
OF d OF
/ e P —
(7.5) Je(Y1y e Yn) = o A oy

for k =1,...,n. The stationary condition ¢J =0 =

n

(7.6) > (e, i) =0
k=1
(7.7) = (e&, Ji) = 0 by linear independence.

for all K =1,...,n. Thus, by the Euler-Lagrange Lemma, this implies

(7.8) J, =0
fork=1,...,n. ie.
oF d OF
(7.9) — a5 =
Oy, dx Jy,,
for k=1,...,n. (7.9) is a system of n Euler-Lagrange equations. These are solved subject

to (7.3).

)
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EXAMPLE 7.1. F = y1y5 + yiy2 + yiy5 and so we obtain equations

d
Ji=0=ys+ 2192 — —(yp) =0
1 Yy + 2Y1Y dr (yz)
d
! — 2 2 o !/ —
Jy =0 = 2y192 + y3 dx(y1> 0
Consider
dF  OF Z” oF , OF ,
dr Oz * p <8ykyk * 8y;€yk

the general chain rule.

— a_F +i ’ia_F + OF "
" oz Yedz oy, " oy

k=1

on orbits.

_OF K d [ ,0F
-5+ (ko)

and this is again on orbits. Now we obtain

= i F— 3 ,0_F — a_F
dx — yk@y,g © Ox
on orbits. We define G = —{ }. Then

dG  IF
de Oz’
If g—i =0, i.e. F' does not depend implicitly on x, we have

G _afy_,
dr dx B

n

oF
/ —
F — E yka—y;_c

k=1

on orbits. i.e.

on orbits, where c is a constant. This is a first integral. i.e. G is constant on orbits. This
is the Jacobi integral.
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8. DOUBLE INTEGRALS

Here we look at functions of 2 variables, i.e. surfaces,

(8.1) O = P(z,y).
We then take the integral

(8.2) J(®) = // F(z,y,®,,,®,) dedy

R
with & — pp = given on the boundary 0R of R. Suppose J(®) has a minimum for & = .
Hence R is some closed regioon in the zy-plane and ¢, = M’ , @, = 8‘5 Assume F' has

continuous first and second derivatives with respect to z, y, <I> <I>x, ®,. Consider

J(p+ef) = // F(z,y, ¢+ €€, oo + €&, 0y + £§y) dady
R
and expand in Taylor series

oF oF oF
// { x, Y, e, 90x790y> +5£a +5£m (p +5£ya 02} dxdy
(8.3) )+ 6J 4+ Oo

where we have

(8.4) 5J—5//{ F 5y§F} dady

is the first variation. For an extremum at ¢, it is necessary that

(8.5) 57 =0,

To use this we rewrite (8.4)

OF 0 OF 0 [ OF o0 [ OF
‘”‘5// { (fa%) *a@( f‘?—wy) ~Sor (5%) ~$oy (5—%)} g

Now by Green’s Theorem we have

/ 8Pd:)sdy—/ P dy szaF
OR 830:0

(8.7) // dady = — Q dx Q= Sa—F
AR Doy

So,
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oOF 0 OF 0 OF OF OF
8.8 5J:8// {——— ———} dzd —0—8/ ( dy — —dx).
(8.8) 00 T oroe  ayog, ) e S0, Y Sy,

If we choose all functions ® including ¢ to statisfy

Y =¢B on OR
then ¢ +¢€ = pp on OR
=£=0 on OR.

Hence (8.8) simplifies to

oF 0 OF 0 OF
“*ﬂﬂww{%‘%wgﬁw@}mw
= (g€, J' ().

By a simple extension of the Fuler-Lagrange lemma, since ¢ is arbitrary in R, we have
d0J =0 — ¢(z,y) is a solution of

“OF 0 OF 9 OF _

&9 T "9, aeve owdg,

This is the Fuler-Lagrange Equation - a partial differential equation. We seek the solution
© which takes the given values ¢ on OR.

EXAMPLE 8.1. F = F (2,9, 9, ¢u, 0y) = %api + %gpz + fp, where f = f(z,y) is given. The
Euler-Lagrange equation is

OF . OF __ OF
op Dps  TT Dy, TV

So,
OF 0 OF 0 OF B 0 0

9 " owop oyog, T at Ty T

So, i.e. we are left with

P % B

a2 o

which is Poisson’s Equation.



CALCULUS OF VARIATIONS 21

EXAMPLE 8.2. F = F(x,t, ¢, ¢z 1) = 392 — 25 ¢7. The Euler-Lagrange equation is

This is the classical wave equation.

9. CANONICAL EULER-EQUATIONS (EULER-HAMILTON)
9.1. The Hamiltonian

We have the Euler-Lagrange equations

oF d oF
(9.1) — = — =
Oyr  dz Oypr
which give the critical curves yy,...,y, of
(9.2) JY1,...,Y,) = /F(x,Yl,...,Yn,Y{,...,Yé) dx

Equations (9.1) form a system of n 2nd order differential equations. We shall now rewrite
this as a system of 2n first order differential equations. First we introduce a new variable

B oF
B Dy

(9-3) Di

i=1,...,n.

p; is said to be the variable conjugate to y;. We suppose that equations (9.3) can be solved
to give 3’ as a function v, of z,y;,p; (j = 1,...,n). Then it is possible to define a new
function H by the equation

(9.4) H(z, Y1, YnsD1s- - Dn) :Zpiyg—F(x,yl,...,yn,yi,...,y;)
i=1

where y; = 1¢;(z,y;,p;). The function H is called the Hamiltonian corresponding to (9.2).
Now look at the differential of H which by (9.4) is
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& ) OF " [OF oF /,
= ;(M‘l' y;dpi) — %dif - ; <a—%dyz +%/yi>
F
(9.5) dx+z< tdpy — 2 )

’l

using (9.3). For H = (x,y1,. .., Yn, P1,- - -, Pn) then we have

oOH o 8H

Comparison with (9.5) gives

,  OH _OF _0H
Yi = opi dyi Oy
dy; OH dp; OH
9.6 = _ _
(96) dr  Jp; der  Oy;
for i = 1,...,n. Equations (9.6) are the canonical Euler-Lagrange equations associated
with the integral (9.2).
ExaMPLE 9.1. Take
b
(9.7) J(Y) = / ((Y')? + pY?) da
where a, 3 are given functions of z. For this F(z,y,y) = a(y’)? + By? if so
oF 1
- - 2 / !/ = .
¢ 3y ay =y 2a¢

The Hamiltonian H is, by (9.4),

H=py - F
1
=py —a(y)? - By*  withy' = —¢
2c
1 1 9
=Pg P O aP By
1
= @ZF - 6y2
in correct variables z,y, p. Canonical equations are then
dy oH 1 dp 0H
(9.8) =P - = —20y.

dz 8p 2a Cdr oy
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The ordinary Euler-Lagrange equation for J(Y) is

which is equivalent to (9.8)

9.2. The Euler-Hamilton (Canonical) variational principle.
Let

(P,Y) = /ab {P% _ H(m,Y,P)} da

be defined for any admissible independent functions P and Y with Y (a) = y,, Y (b) = w,
ie.

. atr=a
Y:?JBZ{y
Yy atx =0.

Suppose I(P,Y) is stationary at Y =y, P = p. Take varied curves

Y=y+¢& P=p+en.
Then we obtain

b d
M+ eny+e) = [ {20 - Hloy+ e} ao
" dy oy de, dE 0H _ 0H
-/ { Py T, +€pd +€Ud——H(%y,p)—gfa—y—gﬂa—p—Oz}

where we have

b dy d¢ OH OH
6]_E/a {ndx P 6 "a—p} de

B b dy O0H dp 0OH b
= [P(E-5)- g(aw—y)}d“@flﬂ
=0

If all curves Y, including y, go through (a,y,) and (b,y,) then £ =0 at + = a and x = b.
Then 61 = 0 = (p,y) are solutions of

dy _ OH _dp oH

dz ~ dp S dr oy (a<z<b)

with
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_ )Y atz=a
== Yy atax=1>

Note. If Y = yp no boundary conditions are required on p.

9.3. An extension.
Modify I(P,Y’) to be

Loa(P,Y) = /ab {P% — H(z, P, Y)} dz — [P(Y — yB)] b

Here P and Y are any admissible functions. I,,.q is stationary at P =p, Y =y. Y = y+e&¢,
P = p+ ey and then make 01,0, = 0. You should find that (y, p) solve

dy _od  _dp_0H
de  Op de 0Oy
with y = yp on [a, b].

10. FIRST INTEGRALS OF THE CANONICAL EQUATIONS

A first integral of a system of differential equations is a function, which has constant value
along each solution of the differential equations. We now look for first integrals of the
canonical system

10.1 = — = =1,.
(10-1) dz  Op; dz Oy (i=1,..0sm)
and hence of the system

dy; oF d OF
10.2 L=y - — = =1..
(10.2) Ly, e il (i=1,..n)

which is equivalent to (10.1). Take the case where

oF

a—x—O.

ie. F=F(y1,.. s Yn, ¥y ---,4). Then

H = zn:pzy; —F
i=1

is such that %—IZ = 0 and hence
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0
dH ag’ " (O0H dy; OH dp;
dr Oz +;<8yi dz * Op; dx)'
On critical curves (orbits) this gives
_Z OH OH 8H( 1)8[-[
dyi o, ap o,

:0

which implies H is constant on orbits. Consider now an arbitrary differentiable function
W= W()x>yla <oy Yns D1y - - 7pn) Then

aw 8_W+i oW dy;  OWdp\  OW +i oW OH OW OH
dr  Ox Oy; dv Op; do ) Oz Oy; Op;  Op; Oy,

on orbits.

Definition: We define the Poisson bracket of X and Y to be

"L (0XOY 00X oY
[X’ Y] B Z_; <ayi Op; a Op; 8%)

with X = X (y;,p;) and Y =Y (y;, ps)-

Then we have

dw ow

+ (W, H
dz ~ or +1 )
on orbits. In the case when 2 a = 0, we have
dWw
H
4 = W H].
So,
dWw
— =0 [W,H]=0.

dx
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11. VARIABLE END POINTS (IN THE y DIRECTION)
We let the end points be variable in the y direction

JY)= /b F(z,Y,Y") dz.

So y(z) is NOT prescribed at the end points. Suppose J is stationary for Y = y. Take
Y =y +¢e£. Then

J(y+¢€) = (z,y+e€y +e'¢) da

oF oF
F(x,y,y)—|—5§—+ §—+Og} dx.

-

—

Thus

- [ (g}

_/ g a_F_iﬁ_F dx +
B ag dy dx oy v

If J(Y) has a minimum for Y = y, we need 0. = 0. There are four possible cases in which
we require this to happen. We realise these diagrammatically as

o b
<.

a

o O D

(i)

b a

(iii)

b

a

(iv)

b

FIGURE 9. The four possible cases of varying end points in the direction of y.
i) In this case we have that £ = 0 at = a and x = b. This gives us that
b
OF d OF
/a gg{é‘y dx@y’} )
(a <z <b).

which is just our standard Euler-Lagrange equation.
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ii) In this case we have the complete opposite situation where £ # 0 for either z = a
or x = b. This gives us that

oF7’
0] = |ef—
{ggﬁyi
iii) In this case we are given that only one end point gives £ = 0, namely £(a) = 0 but
¢ # 0 for x = b. This gives us the criteria that

a

OF
gé-a—y/ =0 at x = b.
iv) Now our final case is where £(b) = 0 but £(a) # 0. This gives us the condition

oF

8 RS

oy’

Hence §J = 0 = y satisfies the Euler-Lagrange equation

=0 at r = a.

oF d oF
= _ - b
oy Az oy 0 (a <x<b)
with
F
g—y’:O at r =a
oF

If Y is not prescribed at an end point, e.g. x = b, then we require g—; =0 at x = b. Such
a condition is called a natural boundary condition.

ExAaMPLE 11.1 (The simplest problem, revisited). We go back to the Simplest Problem
from chapter 1 where we have F' = (y')? and thus

1
)= [ P s
0
with Y(0) = 0 and Y(1) = 1. The Euler-Lagrange equation is y” = 0 which implies
y = ax + b. Using the boundary conditions we get

wm:o:bZO}
=y

y(l)=1=a=1 -
which is our critical curve.

EXAMPLE 11.2. Let us re-examine this problem in the light of our new theory. We have
again that
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JY) = /0 1(Y’)2 dx

but it is NOT prescribed at x = 0, 1. The Euler-Lagrange equation is " = 0 which implies

that y = ax + . Now we have from the boundary conditions that at x = 0, 1 we have
oF ,
8—3/20 = y1)=a=0 = a=0

and hence y = (.

12. VARIABLE END POINTS: VARIABLE IN & AND ¥y
DIRECTIONS

Yy + 0y

Yo + 0Ya

Yb

Ya

a a+da b b+ 6b /x

F1GURE 10. Variable end points in two directions.

The Euler-Lagrange equations (a < z < b) are

52—520 at r=a

OF

a—y/—O at * = 0.

Let our J to be minimised be

(12.1) J(y) :/ F(z,y,y) da.
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Here y is an extremal and write
(12.2) y(@)=va  y(b) = v
Suppose that the varied curve Y = y + &£ is defined over (a + da, b + db) so that
b+3b

(12.3) Iy + <€) = / Fla,y + 26,y +2€) da

a+da
and at the end points of this curve we write

+ & = Yo+ 0Ya at r=a+ da
(12.4) {y £ = Yo+ 0y

:yb+5yb at x =0+ 0b.

To find the first variation §J we must obtain the terms in J(y +££) which are linear in the
first order quantities €&, da, 0b, dy,, dy,. The total variation (difference of)

AJ = J(y+e€) = J(y)

b+db b
=/ F(x,y+e&y +f) dx—/ F(z,y,y) dz
a+da a

which we rewrite as

b
(125) AJ= / (F(a,y+ €,y +2€) — Fla,y,y)} da
¢ b+6b
+/ F(z,y+e&,y +ef) do
b

a+da
_/ F(x7y+€£7y/+€£/) dz.

We have to assume here that y and £ are defined on the interval (a, b+ 0b), i.e. extensions
of y and y + £ are needed and we suppose that this is done (by Taylor expansion - see
later). Then, expanding F'(z,y + €&, y' + &£’) about (x,y,y’).

b
(12.6) AJ :/a {6588—]; +a§g—5 +O(52)} dz
b+6b
T / (Fle.y.y) +0()} d
b

[T o)

and the linear terms in this case are
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da

r=a

oF
5J=/ { oyt 5—} de + F(z,y,y)|  0b— F(z,y,y)
a r=b

:/a {Efa—FJr 5—} {F(w,y,y’)%}i

b b
(12.7) :/ sf{a—F—iﬁ—F;} dz + {552—5+F(x,y,y’)5m} )

a

The final step is to find £ in terms of dy, da, b at x = a and z = b. Use (12.4) to obtain

Yo + 0yp = y(a + da) + e&(a + da)
=y(a)+ day'(a) + 6 + e€(a) + dass'(a) +

First order terms are then

(12.8) = &f(a) = dy, — day'(a)
(12.9) e€(b) = oy, — by’ (b)
We can now write (12.7) as

b
(12.10) 5J:/ 65{8—]?—38—]?,} dx—l—[a—?];éy—( g—j—F) 5:6] :

This is the GENERAL FIRST VARIATION of the integral J. If we introduce the canonical
variable p conjugate to y defined by

oF

and the Hamiltonian H given by
(12.12) H=py - F
we can rewrite (12.10) as

oOF  d OF ’
12.1 0J = ————1]d oy — Hox| .
1213 [ (55 i) e o]
If J has an extremum for Y = y, then §J = 0 = y is a solution of

F doF

(12.14) or _ dor =0 (a <z <b)
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with
b

(12.15) lpcSy - Héx] — 0.

a

13. HAMILTON-JACOBI THEORY
13.1. Hamilton-Jacobi Equations

For our standard integral

b
(13.1) J(y) :/ F(z,y,y') dz.

The general First Variation is

b b
d
(13.2) 0] = / e (Fy - @Fy/) dz + {p5y — Hém}
where p = 3—5 and H=py — F.
Y
N
oyp —+ B
Yo + OYp C, 2
Yp By
Yo A Cl
| | |
1 1 1 7
a b b+ db x

FIGURE 11. Variable end points in the y direction.

We apply (13.2) to the case in the above Figure, where A is fixed at (a,y,) and C;, Cy are
both extremal curves to By (b, y,) and Bo(b + 0b, yp, + dy,) respectively. Then we have
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J(C1) = function of By = S(b,yp)
J(C3) = function of By = S(b+ b, y, + 0ys)
then AS = §S = pdy, — Hob. Consider the total variation

AS = S(b+0b,y, + ) — S(b, ys).
By (2), the first order terms of (3) are

(13.3) 0S = pdy, — Hob.
Now, Bi(b,y,) may be any end point B(x,y) say and by (4)

(13.4) 65(x,y) = poy — Hox.
Compare with, given S(z,vy),

58 = 8,0y + Sy6x

which gives

(13.5) S,=p S,=-—H.

Hence,

(13.6) Sy + H(z,y,5,) =0

which is the Hamilton-Jacobi equation, where p(= 2—5) = Sy, ¢’ denoting the derivative j—i

calculated at B(x,y) for the extremal going from A to B.

ExAMPLE 13.1 (Hamilton-Jacobi). Let our integral be

b
J(y) = / (v)? da

and thus we have F(x,y,1y') = (v')>. Thus we have

_0F_2, , 1
p—g—y,— yjy—§p
H=py - F

1 1\’

:pgp—<§P)

L,
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Then the Hamilton-Jacobi equation is

Sy + H(z,y,p=295,) =0

=S, + i(Sy)2 =0

(1) How do we solve this for S = S(x,y)?
(2) Then, how do we find the extremals?

13.2. Hamilton-Jacobi Theorem

See hand out.

13.3. Structure of S
For S = S(x,y,a) we have

as_ s oS dy
de  Oxr Oydx

by the chain rule. Now, in a critical curve Cy we have

0S oS
—=-H — = .
ox dy P
So,
ds dy
= H a2
dx +pdx

dS = —Hdz + pdy

Integrating we obtain

S(x.y, 0) = /C (pdy — Hdlz)

:/Fdx
Co

33

on Cy

on CY.

up to additive constant. So, Hamilton’s principal function S is equal to J(y), where J(y)

corresponds to J(y) evaluated along a critical curve.

(1) Case 2L =0, ie. H = H(y,p). In this case, by the result in 10, H = const. = «

oz
say in Cy. This p = f(«,y) say. Then
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S= [ (pdy — Hdx)
Co

= i {f(a,y)dy — adx}
=W(y) — ax.

Put this in the Hamilton-Jacobi equation to find W(y) and hence S. Note: it is
additive rather than S = X (2)Y (y).
(2) Case %—I; =0, hence H = H(z,p). On Cj

dp OH

—— = — = 0= p = const.
dex 0Oy P

on (), say c¢. Then

S= [ (pdy — Hdx)
Co

= /C (edy — H(z,p = c¢)dx)
=cy— V(z).

Again, this separates the x and y variables for the Hamilton-Jacobi equation. In
this case, find V(z) and hence S, by evaluating

V(z) = /H(x,p = ¢) du.

13.4. Examples

EXAMPLE 13.2. Let our integral be

Then we have that F' = (y)%. Thus we have

1
p="Fy=2=y =35p

1
H:py’—F:>H:1p2

The Hamilton-Jacobi equation is
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as 1[as\?
" til(s) =

(1) Now, %—f = 0 here. So,

H = const. = «

say n (. Hence, the the result of 13.3 we can write

S(z,y) =W(y) —ax

Put this in (x) then

4 \ dy N
dWw

=>d—y=2\/a=>W(y)=2\/5y

So, we have

S =2v/ay — azx|.

The extemals are

ﬁzpﬁpzwa
dy

oS 1
%—5:>ﬁy—x—ﬁ

(2) This is also an example of %—I; =0 on Cj
dp O0H dp
—_—— = — —— = 0
de Oy dx
= p = const. =c¢

say. Then

35
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S@aw==]2(ﬂw—de@

1
= / (cdy — —c2dx)
Co 2

L,
=CcYy — 50 Z.
Extremals are
S S
p:a_y:c ﬁ:a [ = const.
So, 3 =95 =y — cx = y = cx + 3, which are straight lines (c, 3 constants).

EXAMPLE 13.3. We have that F(z,y,y') = y/1 + ()2 and we note 2£ = 0. Now,

L N
AN R IR
Also,
H=py — F(z,y,vy) with ¢ = P
W — p?

= /12 — p2.

The Hamilton-Jacobi equation H + % = ( is in this case

05\ > : a8
— 2— [ —_—
{y <0y)} +0x 0
95\, (95\*_
or ay) — Y

91 — 0 and so H = const. = a say on C. So, we can write S(z,y) = W(y) + az

i.e. we have

Hence

So we have that
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Y 1
S(x,y) :/ (v? — a?)? dv + az.

To find the extremals we use the Hamilton-Jacobi theorem

0_5_ a—S—const =0
8y_p do T
say. Then
oS Y Q@
N L0
= y = acosh (x—ﬂ)
a

PART II - EXTREMUM PRINCPLES

14. THE SECOND VARIATION - INTRODUCTION TO
MINIMUM PROBLEMS

So far we have considered the stationary aspect of variational problems (i.e. §J = 0). Now
we shall look at the max, or minimum aspect. That is, we look for the function y (if there
is one) which makes J(Y) take a maximum or a minimum value in a certain class 2 of
functions. So

Jy) <J(Y), YeQ aMINIMUM
JY)<J(y), YeQ aMAXIMUM.

In what follows we shall discuss the MIN case, since the MAX case is equivalent to a MIN
case for —J(Y). For the integral

J(Y) = /bF(:.E,Y,Y’) dx

which is stationary for Y =y (6J = 0), we have

b
J(y+e€) =J(y)+ %62/ {&F,, +2¢¢'Fyy + (€)°Fyy } do+ O
= J(y) + 6*J + Os.

So, providing & and & are small enough, the second variation §%2J determines the sign of

AJ = J(Y) — J(y).
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For quadratic problems (e.g. F = ay® + byy' + c(y')?) the Og terms are zero and

Consider

(15.1)

with

(15.2)

where v, w and f are given functions of x in general.

equation is

(15.3)

with

(15.4)

AT = J(Y) = J(y) = 6T,

15. QUADRATIC PROBLEMS

1 1

J(Y) = /ab {57;(5//)2 - §wY2 — fY} dz

Y(a)=y. Y (0)=u

d{dy}+wy:f a<zx<b

Tdz Vdz

yla) =va.  y(b) =y

If y is a critical curve (solution of (15.3) and (15.4)) then (15.1)

(15.5)

AT = Iy +26) = J) = 5 [ {ole€)? + w0} do

with £ =0 at © = a, b. Has this a definite sign?

2 2

b
T+ = | {3v<y'+eg'>2+1w<y+eg>2—f<y+e§>} da

and we have

b 1 1 b
/ {—v(y’)2 + —wy® — fy} dr + 6/ {vy'& +wyé — f&} da

2 2

b
+€2/ {%v(ﬁ/)2+%w£2} dx

= J(y) +6J +8*J

The associated Euler-Lagrange
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b
6] = 5/ {vy'€ +wyé — fE€} da

. b d / d 1¢1b

_5/a {—ga(vy)eryf—fﬁ} z + [vy'E],
b d

:5/ g{—a(vy’)jtwy—f} dz

AT =J(y+e§) = J(y)
= 0%J

(15.6) = %/ {v(e€)? + w(e€)?} da.

Has this a definite sign?

We consider

Special Case

Take v and w to be constants and let v > 0 (if v < 0 change the sign of J). Then

(15.7) AJ = %qﬁ /b {(g’)2 + %52} do

The sign of AJ depends only on sign of

KO = [(€)+5¢

where {(a) = 0 and £(b) = 0. Clearly K > 0 if ¥ > 0. To go further, integrate ' therm
by parts. Then

(15.8) K(§>=/ab§{—dd—;+%} §dr + [£€7],

Try to imagine £ is expressed as eigenfunctions of operator { }. Then,

d? m(r — a) } \ - n?m?

—@gon — APn ©n = sin {

b—a
Expand

n=1
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where ¢,, = sin { mb(:“) } So,

(15.9) K(€) = /abmi::lamgpm(x) {—dd—; + %} g o () da

where fab Onm dz = 0 for n # m. Then

o0 oo b d2 w
(15.10) = Z Zaman/a ©Om (—@ + ;) on dx

'

2.2
=Pm ( (272)2 +%)<Pn

& n27T2 w b
15.11 :§§ il | ———— + — n@m d
e 1 1““<<b—a>2+v)/aw '
m=1 n=
=0 for m#n
> n?m? w b
15.12 = 2~ 4= 2 dx.
1) it (gem %) [ e

Hence, in (12), if

15.1 ws
(15.13) Gt 20
(n =1 term) then

(15.14) K¢ >0
(15.15) = AJ >0,

which is the MINIMUM PRINCIPLE. Note (15.13) is equivalent to

vm?

(b—a)*
So, for some negative w we shall get a MIN principle of J(Y). (15.13) gives us that if

(15.16) w>—

then we have (7)

i.e.
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with £(a) = 0 = £(b)

Theorem 15.1 (Wirtinger’s Inequality).

b 2 b
(15.17) / ()2 da > B—ap / w? dx
for all u such that u(a) =0 = u(b).

16. ISOPERIMETRIC (CONSTRAINT) PROBLEMS

16.1. Lagrange Multipliers in Elementary Calculus

Find the extremum of z = f(z,y) subject to g(x,y) = 0. Suppose g(z,y) =0 =y = y(x).
Then z = f(z,y(z)) = z(z). Make £ =0, i.e.

of [ dfdy _

ox + oyder 0
Now, from g(z,y) =0

dg  Ogdy _

Ox + oydz 0

We now eliminate j—z in the above equations to obtain

of of gg
16.1 el 1) 2=
(16.1) o 93/( )ggyv =0

EXAMPLE 16.1. Let z = f(z,y) = zy with constraint g(z,y) =z+y—1=0=y=1—uz.
We have discussed this problem in Example 1.4. In this case we have

2= fla,y(x) = a(z 1)

which gives us that

dz
—=1-2x=0.
dx .
Going back to our theory we obtain
dy
—~ 0
Y+ zdx
dy
1— — =0
T+ :de

We also obtain
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dy

1+1d——0
x
Thus we have y + z(—1) =0,1 —x — 2 =0, 1 — 2z = 0. This implies
1
T ==
2
1
:]_— = —
Yy T 9

Thus 2’ = —2 = MAX at (3,1).

16.2. Lagrange Multipliers
We form

Viz,y,A) = f(z,y) + Ag(z, y)
with no constraints on V. Make V stationary:

oV of

) o " or o "
av  of g
b A R N
) dy 9y Oy
v
(c) ox = 9@y =0
Combining (a) and (b) we obtain
of
of [ 909, \\oy _
el 8x( 1)2% =0.

As before in (16.1) we have that (c) is the constraint. We solve (a), (b) and (c) for z, y
and A.

EXAMPLE 16.2. Returning to our example from before we want to establish a maximum

at (,2) for f. Take the points
1 1
=—+4+h = -+ k.
x 2+ Y 2+
Then we obtain that
1 1
h kl=|=+h])|=+k
1 et)= (o) ()
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but this has linear terms in our stationary points. Don’t forget the constraint! Now, the
point (3 + h, 1 + k) must satisfy

g=rz+y—1=0
1 1
~+h+-+k-1=0=h+k=0.

2 2
Hence,

Problem with 2 Constraints

Find extremum of f(x,y,z) subject to ¢1(z,y,2) = 0 and gs(z,y,2) = 0. This could be
quite complicated. But Lagrange multipliers gives a simple extension. Form

Vi(z,y,2, A1, A2) = fi + Mig1 + Aago.
We make V' stationary, so

Ve=0 V, =0 V.=0 Vi =0 Vi, = 0.

16.3. Isoperimetric Problems: Constraint Problems in Calculus of
Variations

Find an extremum of

J(Y) = /bF(:.E,Y,Y’) dz

with boundary conditions Y (a) = y,, Y (b) = y,. This is subject to the constraint

/GxYY =k

where k is a constant. Note that g(Y K(y)—k = 0. If we take varied curves Y = y+¢&¢
then J = J(¢) and K = K (¢) but we note that J and K are functions of one variable. We
need at least two variables! So, take the infinite set of varied curves Y = y + £1&; + €28
(where y is a solution curve). Using this formula for Y we have that J(Y) becomes some
function f(e1,€2). Now,

KY)—k=0 g(e1,62) = 0= 1,69
not independent. Now use the method of Lagrange multipliers to form
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E(e1,80,A) = [+ Ag.
Make E stationary at e; =0, e2 =0 (i.e. Y = y). Then,

of )\— =0
061 881
at E1 = &9 = 0.

o 0,

882 882 B
Now

fler,e2) = J(y + e1&1 + €262)
= J(y) + (e1&1 + €289, J' (y)) + O

and we get

g(e1,62) = K(y +e1&1 + €262) —
=K(y) —k
= (161 + €282, K'(y)) + Os.

Taking partial derivatives we obtain

99

g—i: (&, J'(y)) at er =5 = 0 g = (K@) ater = =0
U frwhaa=a=0 2= KE)ta=c=0

Hence the stationary conditions imply that

(&, J'(y) + XK' (y)) =0
(&2, J'(y) + AK'(y)) = 0.

Since &; and & are arbitrary and independent functions in (a), (b) and y is a solution of

J'(y) + AK'(y) =0
<aF dé)F)Jr/\(@_i@):o

This is the first necessary condition.
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Euler’s Rule
Make J + AK stationary and satisfy K(Y) = k. Check for

{min J(y)

<
max J(y) >

Here we assume K'(y) # 0, i.e. y is not an extremal of K (y).

EXAMPLE 16.3. We want to maximize

J(y)zfaydx

—a

subject to the constraints y(—a) = y(a) = 0 and

K(y) = /_ V1+ (y)? de = L.

Now, use Euler’s Rule. Let F' =y, G = /1 + (y/)? and form

F+AG=y+\/1+ ()2

I(y) = / L dx.

Make [(y) stationary and hence solve

This gives us

oL aor_
dy dxz oy’
d Ay B
dz \/1+ (y)?
d Ay B
dz \ /1+ (v)?
)\ !
Y xr—+c
1+ (y')?
)\2(?//)2
L+ (P (@+oy
- T+
A2 — (z+¢)?

45
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which is (part of) a cricle, centred at (—c, ¢1) and radius r = |A\|. Or L = y+ A\y/1+ (/)2
However, note that g—i = (0 and hence there is a first integral

L —y'L, = const.

The equation above can be written

(x—c) +(y—c1)® =\
This must satisfy the conditions that y(—a) = 0 = y(a) and K(y) = L. This can be
realised diagramatically as:

EXAMPLE 16.4. Find the extremum of

J(y)=/01y2 dx

subject to the constraints

K(y) = /0 (y/)* dz = const. = k*  y(0) = 0 = y(1)

We use Euler’s Rule and form

I(y) = J(y) + MK (y) = / Lds

where L = y? + \(y')?. Make I(y) stationary solve

oL d oL
dy  dady
:>2y—i(2)\y') =0
dx
s 1
=Y Y=

There are three cases for this
(1) § > 0 where sin = = o? (a # 0) then

y = Acosh ar + Bsinh ax.

(2) 5 =0 then

>

y =ax +b.
(3) + < 0 where sinh™' + = —32 (3 # 0) then

y = C'cos fx + D sin fz.
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Now, from the constraints we have

y(0)=0=A=0b=0,C=0
y(1)=0=B=0,a=0,Dsinf =0

=sinf=0
= f=nr
withn=1,2,.... So, y = Dsinnmz withn =1,2,3,.... Take y, = sinnnx
all these functions we take
Yy = Z CnlYn Yp = SINNTT.
n=1

Now calculate J(y) and K (y) for this y function.
1
J(y) = / y* dz
0

1 [ o 00
= / (Z Cp, SN mrx) (Z Cpm SIN mrx) dx
0 n=1

m=1
0o 00 1
= Z cncm/ sin(nmzx) sin(mrzx) dx
n=1m=1 0 -~ _
— L5

Il
(e
o
o | =

3
Il
—

Also,

- /01 (g CpnT cos(mrx)) <mi;1 Cm cos(mwx)) dz

% 1
Cn CopiMTT? / cos(nmx) cos(mmz) dz
1 0

m= 7
Vo

1
§5nm

Now,

47

. To include
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=1
J(y) = 2025
n=1

Write

< R
with equality when ¢, =0 (n = 2,3,4,...) leaving ¢? = 2%22 Then

Yy = csinma,

with ¢ = £82,

Note. We had the Wertinger Inequality (Theorem 15.1)

b ) 71_2 b )
/a(y/> dx/i(b—ay/a y© do

where y(a) = 0 and y(b) = 0. Relating this to our example above we have ¢ = 0 and b = 1.

Thus,
1 1
/ (v)? dz > 7r2/ y* dx
0 0

k2> m?J(y)

\Y

or J(y) < 7’?—2 as found above.
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17. DIRECT METHODS

Let J(Y) have a minimum for Y = y thus J(y) < J(Y) for all Y € €. Our approach to
finding J(y) so far has been via the Euler-Lagrange equation

J'(y) = 0.
Now, suppose we are unable to solve this equation for y. The idea is to approach the

problem of finding J(y) directly. In this case we probably have to make do with an
approximate estimate of J(y). To illustrate, consider the case

JY) = /01 {%(Y’)Q + %Y2 - qY} dz

~~

—F
with Y (0) = 0 and Y (1) = 0. The Euler-Lagrange equation for y is

2

JY) = J) + 5 /0 (€7 +€) da
> J(y)

a MIN principle. Suppose we cannot solve the Euler-Lagrange equation. Then we try to
minimize J(Y') by any route. To take a very simple approach we choose a trial function

Vi = ax(l —x)
such that Y3(0) = 0 = Y3(1). We then calculate

min J(Y}) where Y, = a®(x), ¢ =z(1— ).

Now

J(V1) = J(a®)

1 1 1

:—a2/ (®” + 9?) dx—a/ q® dx
2 Jo 0

~ LA

=5 a

with, say
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1 1
A:/(®’2+<I>2)d:c B:/qcbdx.
0 0
We have that

dJ
@:OZA—BIOjOéopt:Z
Then
1 B2 B 1 B?
opt®) ==—5A——B=———.
Haon®) =574 -3 2 A
Now for ¢ = 1 we have A = %, B = %, Qopt = % = 1—51 and thus J(ap®) = —%2. We note
for later that this has decimal expansion
5 ..
J(aopt®) = ——= = —0.0378.

132
We can continue by introducing more than one variable. For example take

Yo = a1 @1 + ap®,
with, say ®; = (1 — z) and &, = 2?(1 — x). We find

min J(Ys) < min J(Y7).
1,02 aq
We now try and solve the Euler-Lagrange equation for ¢ = 1, which is

—"+y=10<xz<1) y(0)=0=y(l).
We have the Particular Integral and Complementary Function to be

=1 Yo = ae” + be™ .
This gives our general solution to the differential equation to be

y=1y1+y2=1+ae’ +be ".
Now we use the boundary conditions to solve for a and b. These boundary conditions give
us

y0)=0=14a+b=0=b=—-1—-a
y(1)=0=1+ae+be ' =0
= 1+ae— (1+a)e =0

N 1
a=— .
1+e
Then b = —1 — a = ——. Hence our general solution becomes

1+e
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er e

—T

—1— -

Y lte 1+e
1

=1— T l—m_
1+e{€ +e 7%}

Now calculate J(y).
"1 1
J(y):/ {§(y’)2+§y2—y} dx since ¢ =1
1
1 " 1 2 } 1 nl
= —yy" + 5y’ —y e dr S [yy
/0 { 2 2 2L,l9

2/01{%?;(—@/”+y)—y} da _

but —y” 4+ y = 1 by the Euler Lagrange equation and hence

I(y) = —%/01 {1 - 1i€(ew+e1—r>} do

1 1 1

=t {e—-1-(1-¢)} d
5t oTre e (1=e)} da
1+e—1

2 e+1

= —0.03788246 . ..

which is very close to our approximation. In fact the difference between the two values is
0.00000368.

18. COMPLEMENTARY VARIATIONAL PRINCIPLES (CVP’s)
/ DuAL EXTREMUM PRINCIPLES (DEP’S)

Now seek upper and lower bounds for J(y) so

lower bound < J(y) < upper bound.
To do this we turn to the canonical formalism. Take the particular case

b
(18.1) J(Y) = / {%(Y’)Q + %wYZ - qY} dr Y(a)=0=Y(b).
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Hence we have

(18.2) F= %(Y’)Q + %ww —qY
OF
(18.3) P=_5=Y
H(z,P,Y)=PY' — F
(18.4) = %PQ - %ww +qY

Now replace J(Y') by

(18.5.i) I(PY) = /a {p% — H(x, P, Y)} dz — [PY];
(18.5.11) = /b{_p/Y — H} dax.

Then we know from section 9 that I(P,Y) is stationary at (p,y) where

dy O0H

(18.6) & o (a <z <b) and y = 0 on 0|a, b]
dp 0OH
(18.7) oy (a <z <b).

Now we define dual integrals J(y;) and G(p2). Let

(18.8) Ql—{ 'd—i:%— a<x<b)andy—00n8[ab]}
dp e

Then we define

(1810) J(yl) = [(playl) with (pl,yl) e

(18.11) G(p2) = I(p2,y2) with (p2,y2) € Qs

An extremal pair (p,y) € 3 Ny and

(18.12) G(p) = I(p,y) = J(y).

Case

1 1
(18.13) H(z,PY') = §P2 — 5wY2 +qY
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where w(z) and ¢(z) are prescribed. Then

B dy 0H B
(18.14) Ql—{(p,y) a—a—p—p(a<x<b)andy—Oon@[a,b]}
(18.15) Qs =< (p,y) —@:a—H:—wijq,i.e.y:p+q(a<z<b) )
de Oy w

So J(y1) = I(p1,y1) with py = v} if y; = 0 on J|a, b]. Now

J(y1) = /ab {yf - (%(@/)2 - %wyf + qyl) } da

b
1 1
(18.16) — / {§y12 + §wyf — qyl} dx

the original Euler-Lagrange integral J. Next G(ps2) = I(p2,y2) with ys = i(pé +q)

G(p2) = I(p2, 12)

b / 1 2 1 2
= ~Pay2 = | gP2 T 5WY F gy dz

this uses (18.5.ii)

b
1 1
=/ —=ps+-wys —y2 (ph+¢q) p dz

oP2 ™5 219

S]

=wy2

with yo = 2 (ph + q)

1 [ 1
(18.17) = _5/ {pg + E(p; +q)2} dz
If we write
(18.18) y1 =y +e€ P2 =Dp+EN

in (18.16) and (18.17), expand about y and p and use the stationary property

0J(y,e§) =0 6G(p,en) = 0.
We have
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(18.19) AT =3) = ) = 5 [ {6 + ulee} da
b
(18.20) AG=Glp) -Gl = | {(em? " %(en'f} da
Hence, if
(18.21) w(z) >0

we have AJ > 0 and AG <0, i.e.

(18.22) G(p2) < G(p) =1(p,y) = J(y) < J(),

the complementary (dual) principles.

ExamPLE 18.1. Calculation of G in the case w =1, ¢ =1 on (0, 1). For this

1

G(p2) = —5/01 {p3+ ¥y +1)*} da.

Here py is any admissible function. To make a good choice for p, we note that the exact
p and y are linked through

dy
= — = = 1
P=q y(0) =0=y(1)
So, we follow this and choose
d
Pzzd—(ﬁ‘l’) U =2z(l-u2)
x
Thus we obtain
G(p2) = G(B)

1 1
:_5/0 {/62\11,2+(ﬁ\11,/+1)2} dx

= —%Aﬁ—Bﬂ—C
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where we define

A :A {(\D/)2 + (\I’//)2} dr = 13_3

B:/ U dr = -2
0

1
C= 7
Now compute % =—-AB-B=0= fBopt = —% = %. So,
MAX G(8) = G(Bopt) = B—2 —C= L —0.038461
5 V| 26 e

From the previous calculation of J(y;) we had in section 17 that

MIN = —0.03787878. ..
Hence we have bounded I(p,y) such that

—0.038461 < I(p,y) < —0.03787878
In this case we know that I(p,y) = —0.03788246

19. EIGENVALUES

(19.1) Ly = \y.

For example

d*y
(19.3) y(0)=0  y(1)=0.

We have that (19.2) has general solution

(19.4) y = Asin VAz + Bcos VA
(19.5) y(0)=0=B=0

y(1)=0= Asin VA =0
Take sin v/A = 0 then we have

19.6 Vi=nrn=123 .. or A=n*r?n=123..
( ) M M ) M ) ) M

Then we have that

55
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Yp =sinnmr n=1,23,...
A = nPr?

In general, Eignevalue problems (19.1) cannot be solved exactly, so we need methods for
estimating Eigenvalues. One method is due to Rayleigh: it provides an upper bound for
A1, the lowest Eigenvalue of the problem. Consider

(19.7) A(Y) = /01 Y (—% - /\1) Y dx

for all Y € Q = {C5 functions such that Y (0) =0 =Y (1)}. We write

2

n=1
d”y

{y.} = complete set of eigenfunctions of — A
x
= {sinnmz}.

Then (19.7) becomes

1 o d2y 00
A(Y> = /0 Zanyn <_? - Al) Z amymdx

m=1

1
- Z ApAm ()‘m - )\1) / YnYm
O

=0(n#m)

where A\, = n?7? and hence 0 < \; < Ay < A3 < .... So we have A(Y) > 0. Rearranging

(19.7) we obtain
1 J2 1
/ Y(——‘?)de})\l/ Y? dz
0 dz 0

Ly (~5#) o
fol Y2 dx
which is the Rayleigh Bound. To illustrate: take Y = x(z — 1). Then

(19.8) A1

N
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A(Y) = 3 = 10.

)

The exact Ay = 72 ~ 9.87.

ExAMPLE 19.1. From example 2 of section 16 we have

(1) (', u') = Ao(u, u)
where u(0) =0, v/(1) = 0 and

(u,u) = /01 u? dx/

We know that \g = %2. We can use () to obtain an upper bound for Ag:

4
(1) o< 2= ? ~ 2.85.

5

[y

20. APPENDIX: STRUCTURE

Integration by parts has been used in the work on Euler-Lagrange and Canonical Equations.

or dor

dy  dzoy
dy OH
de  dp
dp OH
_@_8—y'

Simplest pairs of derivatives % and —% appear. We now attempt to generalise. We take

an inner produce space S of functions u(x) and suppose (u,v) denotes inner product. A
very useful case is

mm:/wm@m

with w(z) > 0, where w is a weighting function. Properties
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(u,u) = 0.
Write T as a linear differetial operator, e.g. T' = % and define its adjoint T by
(u, Tv) = (T"u,v),
where we suppose boundary terms vanish.

EXAMPLE 20.1. T'= & and (u,v) = [ww(z) dz. Then

(u, Tv) = / uj—Zw(x) da

:/(—1)%(w(:€)u)v ar+[ ]
= /(—1)%%(wu)vw(1’) dz
= (T"u,v).
So,
.14 L__1d
-t ro-1dn

From T and T™* we can construct L = T*T and hence

1d d
L=T"T=——(w—.
wdx (wdx)

Now look at

(u, Luy = /u(T*Tu)w(x) dz
= (u, T"Tu)
= (Tu,u)
_ / (Tu)(Tu)w(z) do
= 0.

So, L is a positive operator (e.g. w =1, T = %, T = —% = L= —%). Also
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(u, Lv) = (u, T*Tv)

= (Tu, TV)

= (T"Tu,v)

= (Lu,v).

But (u, Lv) = (L*u,v) by definition of adjoint. So, L* = L. So, L = T*T is a self-adjoint
operator.

The Canonical equations generalise to

g O g O
with Euler-Lagrange equation
oF < oF )
—+ T =] =0.
Oy 9(Ty)
Eigenvalue problems.
Lu = \u

(i.e. T*Tu = Au). A is an eigenvalue. Suppose there is a complete set of eigenfunctions
{u,}, corresponding to eigenvalues {\,}. Now

(u, Luy = (u, T« Tuy = (Tu,Tu) > 0
Let u = u,, then

which implies that A\, > 0. Suppose the A, are discrete, so if we order them

0<)\1<)\2<)\3<...
Orthogonality of u] s. Let

Lu,, = M\ u, and L, = Apt,
Then, taking innner products we have

<Um, Lun) - <um> )\nun> = )\n<uma un)
<un7 Lum) = <un7 >\mum> = >\m<un7um> = >\m<um7un>

But L self adjoint, so

<uvaun> = <Lum7un> = <un7 Lum)
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using (u,v) = (v,u). So,

0= (An — An) (Ui, up)

which implies (u,,, u,) = 0 if A\, # A\,,. Orthogonality. An example of this is

d d d?
w t e e o2 U sin(nmzx) A, =n°m

d 1d 1d d
w=2x (x) (xdzc

_ _ 2
da xdz zdx ) tn = Jol@n)  An = a,.

Orthogonality allows us to expand functions in terms of eigenfunctions u,. Thus

u(z) = Z AUy () Lu, = \yuy,.
n=1

Then

[e.e]

(ug, u) = Z(uk,un) = ¢ (up, ug,).

Consider A(u) = (T'u, Tu) for example (v/,v') = [w?w(z) dz. We have that

A(u) = (u, T * Tu) = (u, Lu)

Expand u in eigenfunctions u,, of L. Then

Au) = <§: Cply, L f: cmum>
n=1 m=1
= i i CrnCon (U, Ltlyy)



using that Lu,, = A\, upn,

i.e. A(u) = A {u,u) and so

(u,Lu)
(u,u)
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o e}

D> cnm(tn, Amii)
n m
o0 o0

Z Z CrnCon A (U Uiy )
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