Examples for Runge-Kutta methods

We will solve the initial value problem,

$$
\frac{d u}{d x}=-2 u+x+4, \quad \mathrm{u}(0)=1
$$

to obtain $u(0.2)$ using $\Delta x=0.2$ (i.e., we will march forward by just one Δx).
(i) 3rd order Runge-Kutta method

For a general ODE, $\frac{d u}{d x}=f(x, u(x))$, the formula reads

$$
\begin{aligned}
\mathrm{u}(\mathrm{x}+\Delta \mathrm{x}) & =\mathrm{u}(\mathrm{x})+(1 / 6)\left(\mathrm{K}_{1}+4 \mathrm{~K}_{2}+\mathrm{K}_{3}\right) \Delta \mathrm{x} \\
\mathrm{~K}_{1} & =\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x})) \\
\mathrm{K}_{2} & =\mathrm{f}\left(\mathrm{x}+\Delta \mathrm{x} / 2, \mathrm{u}(\mathrm{x})+\mathrm{K}_{1} \Delta \mathrm{x} / 2\right) \\
\mathrm{K}_{3} & =\mathrm{f}\left(\mathrm{x}+\Delta \mathrm{x}, \mathrm{u}(\mathrm{x})-\mathrm{K}_{1} \Delta \mathrm{x}+2 \mathrm{~K}_{2} \Delta \mathrm{x}\right)
\end{aligned}
$$

In our case, $\mathrm{f}(\mathrm{x}, \mathrm{u})=-2 \mathrm{u}+\mathrm{x}+4$. At $\mathrm{x}=0$ (the initial state), and using $\Delta \mathrm{x}=0.2$, we have

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{f}(0, \mathrm{u}(0))=\mathrm{f}(0,1)=-2 * 1+0+4=2 \\
& \mathrm{~K}_{2}=\mathrm{f}(0.1, \mathrm{u}(0)+2 * 0.2 / 2)=\mathrm{f}(0.1,1.2)=-2 * 1.2+0.1+4=1.7 \\
& \mathrm{~K}_{3}=\mathrm{f}(0.2, \mathrm{u}(0)-2 * 0.2+2 * 1.7 * 0.2)=\mathrm{f}(0.2,1.28)=-2 * 1.28+0.2+4=1.64
\end{aligned}
$$

Thus,

$$
u(0.2)=u(0)+(1 / 6)^{*}\left(2+4^{*} 1.7+1.64\right) * 0.2=1.348
$$

(ii) 4th order Rugne-Kutta method

For a general ODE, $\frac{d u}{d x}=f(x, u(x))$, the formula reads

$$
\begin{aligned}
\mathrm{u}(\mathrm{x}+\Delta \mathrm{x}) & =\mathrm{u}(\mathrm{x})+(1 / 6)\left(\mathrm{K}_{1}+2 \mathrm{~K}_{2}+2 \mathrm{~K}_{3}+\mathrm{K}_{4}\right) \Delta \mathrm{x}, \\
\mathrm{~K}_{1} & =\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x})), \\
\mathrm{K}_{2} & =\mathrm{f}\left(\mathrm{x}+\Delta \mathrm{x} / 2, \mathrm{u}(\mathrm{x})+\mathrm{K}_{1} \Delta \mathrm{x} / 2\right), \\
\mathrm{K}_{3} & =\mathrm{f}\left(\mathrm{x}+\Delta \mathrm{x} / 2, \mathrm{u}(\mathrm{x})+\mathrm{K}_{2} \Delta \mathrm{x} / 2\right), \\
\mathrm{K}_{4} & =\mathrm{f}\left(\mathrm{x}+\Delta \mathrm{x}, \mathrm{u}(\mathrm{x})+\mathrm{K}_{3} \Delta \mathrm{x}\right)
\end{aligned}
$$

For our I.V.P., using $\Delta x=0.2$, we have

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{f}(0, \mathrm{u}(0))=\mathrm{f}(0,1)=-2 * 1+0+4=2 \\
& \mathrm{~K}_{2}=\mathrm{f}(0.1, \mathrm{u}(0)+2 * 0.2 / 2)=\mathrm{f}(0.1,1.2)=-2^{*} 1.2+0.1+4=1.7 \\
& \mathrm{~K}_{3}=\mathrm{f}(0.1, \mathrm{u}(0)+1.7 * 0.2 / 2)=\mathrm{f}(0.1,1.17)=-2^{*} 1.17+0.1+4=1.76 \\
& \mathrm{~K}_{4}=\mathrm{f}(0.2, \mathrm{u}(0)+1.76 * 0.2)=\mathrm{f}(0.2,1.352)=-2 * 1.352+0.2+4=1.496,
\end{aligned}
$$

which leads to

$$
u(0.2)=u(0)+(1 / 6) *(2+2 * 1.7+2 * 1.76+1.496) * 0.2=1.3472 .
$$

Note that the exact solution is $u(x)=-0.75 \exp (-2 x)+0.5 x+1.75$, or $u(0.2)=1.3472599$... The 4th order R-K method is more accurate than the 3rd order R-K method with the same $\Delta \mathrm{x}$.

